• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio e imagens

Domínio e imagens

Mensagempor joao henrique » Sáb Fev 01, 2014 15:12

Estou com dificuldades para resolver alguns exercícios referentes a imagens e domínio das funções

como eu indico o domínio e a imagem de tais funções, tem alguma notação ou eu preciso fazer o gráfico e verificar o eixo x e y

f(x) = x^{2} +3x + 1

f(x) = 1+ x^{2}

f(x) = 2x -1
joao henrique
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jan 23, 2014 15:56
Formação Escolar: GRADUAÇÃO
Área/Curso: segurança da informação
Andamento: cursando

Re: Domínio e imagens

Mensagempor IlgssonBraga » Dom Fev 02, 2014 16:57

Olha cara, para vc obter o domínio de uma função é só basicamente se perguntar: "Qual número eu coloco aí para a função continuar definida?", ou seja, qual o conjunto de números que aquela determinada equação aceita para x.
No caso da primeira
f(x) = x^{2} +3x + 1

Você nota que pode colocar qualquer número em x, pois todo número tem o seu quadrado. E todo número também pode ser multiplicado por 3, somando os resultados temos um número. Então o domínio dessa é o conjuntos dos reais, ou seja, qualquer número que pertence aos reais. Graficamente você pode ver o domínio como sendo os números dos eixo x, onde começa e onde termina. Nesse caso se estende indefinidamente.

f(x) = 1+ x^{2}

Mesma coisa da 1ª. Qualquer número pode ser colocado lá para a função assumir um valor. Logo o domínio é todo o conjunto dos reais.

f(x) = 2x -1

E aqui também mesma coisa, a diferença que agora temos uma função afim. Mas a ideia é a mesma.

Quanto as imagens temos:

f(x) = x^{2} +3x + 1
Vc pode verificar o vértice dessa parábola e dizer que a imagem é tudo aquilo acima ou igual ao vértice. Já que graficamente
a imagem é o eixo y. Abaixo do vértice não temos nada, ela é de concavidade pra cima.

f(x) = 1+ x^{2}

Mesma coisa da anterior, como é uma equação do 2º grau e o gráfico é uma parábola procura-se o vértice e verifica o que
está acima do vértice. Mas se fosse com o índice a negativo, -ax^2+bx+c e a concavidade para baixo é tudo que está abaixo
do vértice a imagem, é só uma analogia.

f(x) = 2x -1

E nessa o gráfico é uma reta e a reta estende indefinidamente para cima e para baixo, mesmo ela sendo obliqua, então a imagem é o conjuntos dos reais.


Espero ter ajudado, se vc souber fazer os gráficos ajuda bastante !
IlgssonBraga
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jul 18, 2013 10:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D