• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor mahhfe » Sex Nov 13, 2009 12:10

Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor Molina » Sex Nov 13, 2009 13:43

mahhfe escreveu:Estou com dificuldades de resolver essa questão que "aparenta" não ser dificil

UECE 2001.2
Seja N = { 1, 2, 3, 4, ...) e f : A ---> N a função definidade por f(x) = \frac{x + 20}{x} . Se A\subset N é o dominio mais amplo possível para f, a soma dos 5 menores elementos de A será:
a) 15
b) 18
c) 20
d) 22



Ps. é o meu primeiro post, estou tendo um pouco de dificuldades com os codigos, se algo estiver fora das regras ou codigos errados é só me falarem.

Primeiramente bem-vindo ao fórum! Faça bom uso...

Vamos lá quanto a questão:

Temos a seguinte função f(x) = \frac{x + 20}{x} e queremos encontrar valores que quando substituirmos x em \frac{x + 20}{x} encontremos um número pertencente a N, ou seja, um número natural 1, 2, 3, ...

Não é difícil porque iremos fazer a seguinte "jogada"... Ao invés de usar \frac{x + 20}{x} podemos escrever \frac{x}{x}+\frac{20}{x} e por consequencia 1+\frac{20}{x}.

Ou seja, 1+\frac{20}{x}=N onde N é um número inteiro. Para isso dar inteiro a fração tem que ser redutível, sendo assim temos que encontrar os x em que vamos dividir 20 e encontrar um número inteiro. Em outras palavras, quais são os 5 primeiros números que 20 é divisível?

Tente resolver agora.
A resposta certa é a letra d)
Qualquer dúvida informe aqui.
Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função

Mensagempor mahhfe » Sex Nov 13, 2009 19:06

Oi Molina, poxa, obrigada!
Consegui! Fiz de duas maneiras inimagináveis e nunca pensei nessa. Sabe com é, estou adentrando no mundo da matemática e aos poucos vou pegando o jeito. O meu problema maior é com a interpretaçao do problema, mas creio que esse é o maior problema da maioria das pessoas.
mahhfe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 13, 2009 11:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59