• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa

Função inversa

Mensagempor Lola » Ter Jun 11, 2013 08:18

Olá,
Alguém por favor poderia me ajudar a obter a inversa da função f(x)=x²-4x+3? Eu não estou conseguindo isolar o y!
Muito Obrigada!!
Lola
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Mar 18, 2011 18:31
Localização: São Paulo
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função inversa

Mensagempor e8group » Ter Jun 11, 2013 21:43

Como não foi mencionado o domínio e contradomínio ,deduzimos que é uma função de \mathbb{R} em \mathbb{R} .Neste contexto a função não é invertível .De fato : f(\mathbb{R}) \subsetneq  \mathbb{R} .pois , 2 está no contradomínio da função ,entretanto 2 \notin f(\mathbb{R}) .Além disso , 1 \neq 3 mas f(1) = f(3)=0 .Vamos fazer o seguinte ,suponha A ,B \subset{\mathbb{R} de modo que a função f: A \mapsto B seja invertível , e sua inversa f^{-1} : B \mapsto A .Podemos escrever então y = f(x) \iff  x = f^{-1} (y) .Assim , y = (f\circ f^{-1})(y) \implies  y =  (f^{-1}(y))^2 -  4(f^{-1}(y)) + 3 \implies  (f^{-1}(y))^2 -  4(f^{-1}(y)) + 3 -y = 0 .

Agora tente aplicar a fórmula resolvente ,com isso você tem a função inversa .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.