• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinaçao de Zeros de uma expressao analitica]

[Determinaçao de Zeros de uma expressao analitica]

Mensagempor R0nny » Sáb Mai 04, 2013 21:53

Dada a expressao analitica: G(x)= x²/2-(2m+3)x+3m²+m/2+2. Determine os valores de m para que admita dois zeros de sinais contrários. Entao, nesta parte podemos ver que para que tenha zeros de sinais contrários o seu produto deverá ser menor que 0, o discriminate(delta) deverá ser maior que 0 e se formos a usar a soma sera=0, so que a minha dúvida vem no facto de existir dois polinomios de incognitas diferentes de grau 2, isto é, x² e 3m², entao eu nao sei se eu tenho que separar eles em partes ou nao, por exemplo fazer em funçao em x e depois fazer em funçao a m, mas se eu fizer em funçao em cada um nao dará o resultado esperado. Soluçao:] -1-raiz quadrada de 97/12, -1+ raiz quadrada de 97[ nao estou a chegar nessa soluçao. Outro facto é de por exemplo se nos perguntassem a mesma questao mas dizendo que para determinar dois zeros diferentes sendo o de maior valor absoluto o negativo. Como chegar a está soluçao :arrow: ]-1-raiz quadrada de 97/12 e -1+raiz quadrada de 97/12?? :!: :?:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.