• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função, inequação modular.

Função, inequação modular.

Mensagempor Sugvato » Qua Abr 10, 2013 10:56

Olá!, Bom dia a todos.

Bom, estou com algumas dúvidas sobre inequação modular. Me deparei com alguns problemas que eu não consegui resolver e outros que a minha resposta não "batia" com o gabarito.

Vou mostra-las:

1- |x^2-4|=|x-6|;

2- |x^2-2x-3| < 3x-3;

Essas duas últimas, por favor, sejam mais didáticos!

3- |2x-3|+|2x-5|\geq6;

4- (x^2-4)|x-6|>0;

Nas duas ultimas tive dificuldade me saber como fazer os sinais, por exemplo na 4 eu resolvi assim:

(x^2-4)|x-6|>0\Rightarrow(x+2)(x-2)|x-6|>0

A partir dai eu fiz as duas possível equações, com o modulo positivo e igual a zero e com o modulo negativo.

(x+2)(x-2)(x-6)>0 \cup(x+2)(x-2)(6-x)>0

na minha visão funcionaria como duas equações de segundo grau tendo raizes 2,-2,6 (ambas) Porem agora fica o problema. Vou fazer a reta com a primeira equação e outra com a segunda.

______-____+_____-____+
-\infty___-2____2____6____+\infty onde o conjunto solução da primeira seria S=]-2,2[\cup]6,+\infty[ testamos e veremos que apenas os > que 6 funcionam na equação e assim S=]6,+\infty[S=]6,+\infty[


e a segunda ficaria assim:

______+____-_____+____-
-\infty___-2____2____6____+\infty onde o conjunto solução seria S=]-\infty,-2[\cup]2,6[ testamos e veremos que apenas os S=]2,6[ funcionam.


Então como resposta final ficaria S=]2,+\infty[, Estou errado????


Por favor! Me ajudem
Sugvato
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 10, 2013 10:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Aeroespacial
Andamento: formado

Re: Função, inequação modular.

Mensagempor Sugvato » Qui Abr 11, 2013 19:28

Por favor, não sei se estou cometendo algum erro dando um UP.

Mas UP....
Sugvato
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 10, 2013 10:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Aeroespacial
Andamento: formado

Re: Função, inequação modular.

Mensagempor e8group » Sex Abr 12, 2013 12:47

Na próxima vez post apenas uma dúvida por tópico ,ok ?

Com respeito aos exercícios (1) e (3) terá de considerar no máximo 4 casos . Para explicar o procedimento de solução para ambos exercícios ,vamos considera que |f(x)| + |g(x)| > k .Onde ,f,g são funções e k uma cosntante . Temos então 4 casos a considerar :



Caso 1 :

g(x) \geq 0 e f(x) \geq 0.

Caso 2 :

g(x) < 0 e f(x) < 0

Caso 3 :

g(x) > 0 e f(x) < 0

Caso 4 :

g(x) < 0 e f(x) > 0


Suponha que A_1 , A_2 , B_1, B_2 são conjuntos de números tais que :

\forall x \in A_1 \subset D_f , f(x) \geq 0

\forall x \in A_2 \subset D_f , f(x) < 0

\forall x \in B_1 \subset D_g , g(x) \geq 0

\forall x \in B_2 \subset D_g , g(x) < 0

Assim ,por defenição de módulo ,podemos escrever |f(x)| + |g(x)| > k como :

f(x) + g(x) > k   ,    \forall x \in  A_1 \cap B_1

-f(x) - g(x) > k   ,  \forall x \in  A_2 \cap B_2

-f(x) + g(x) > k   ,  \forall x \in  A_2 \cap B_1

f(x) - g(x) > k   ,  \forall x \in  A_1 \cap B_2 .

OBS.: Poderíamos também ter |f(x)| + |g(x)| \geq k  ,  |f(x)| + |g(x)| \leq k (neste caso obrigatoriamente k \geq 0) , |f(x)| - |g(x)| \geq k  , |f(x)| - |g(x)| \leq k .

Pergunta :

O que acontece se |f(x)| = |g(x)| ou |f(x)| - |g(x)| = k em que f(x) = |x^2 - 4| , g(x) = |x-6| e k = 0 ???

E se f(x) = 2x- 3 , g(x) =2x-5 e k = 6 ,qual a solução da desigualdade |f(x)| + |g(x)| \geq k ????

Se você conseguir resolver ambos exercícios conseguirá resolver o (2) também ,ele é semelhante . Já em relação ao exercício (4) ,note que (x^2-4)|x-6|> 0 \iff x^2 - 4 > 0 e |x-6| \neq 0 pois \forall x \in \mathbb{R}\setminus\{6\} , |x-6|> 0 .

Tente concluir
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função, inequação modular.

Mensagempor Sugvato » Sex Abr 12, 2013 19:35

Primeiramente, muito obrigado pela ajuda!.


Não tinha "sacado" o as condições do exercício 4. Estava persistindo no meu erro e acabei me segando.

Vou resolver voltar a tentar resolver tomando os conceitos que você me passo! Muito obrigado!

Após qualquer dúvida volto a postar aqui mesmo!.
Sugvato
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Abr 10, 2013 10:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Aeroespacial
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.