por Debylow » Sex Nov 30, 2012 18:32
Considere duas funções

e

, definidas por:


determine o valor da expressão
![\left[h\left(x \right) \right]{}^{2} - \left[g\left(x \right) \right]{}^{2} \left[h\left(x \right) \right]{}^{2} - \left[g\left(x \right) \right]{}^{2}](/latexrender/pictures/9aae39664fccad88048e12b72214fc90.png)
Obg quem puder responder
-
Debylow
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Nov 13, 2012 17:37
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por DanielFerreira » Sex Nov 30, 2012 21:29
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Debylow » Ter Dez 04, 2012 11:21
me explica pq dividiu por 2 e transformou em uma multiplicação ? nao entendi
-
Debylow
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Nov 13, 2012 17:37
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por Russman » Ter Dez 04, 2012 20:00
Existe uma identidade que diz

.
Ou seja, a diferença dos quadrados de dois números é igual ao produto da soma pela diferença desses números.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Debylow » Ter Dez 04, 2012 20:41
hmm entendi , obg
-
Debylow
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Nov 13, 2012 17:37
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Determine o valor de x:]
por Mtfera » Seg Dez 03, 2012 20:58
- 1 Respostas
- 1307 Exibições
- Última mensagem por DanielFerreira

Seg Dez 03, 2012 23:00
Funções
-
- Determine o valor do limite
por Cleyson007 » Sáb Abr 28, 2012 17:27
- 6 Respostas
- 2489 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- determine o valor de x para q se tenha
por weverton » Seg Nov 08, 2010 17:32
- 1 Respostas
- 2461 Exibições
- Última mensagem por davi_11

Qua Nov 24, 2010 13:03
Logaritmos
-
- (Calculo de trigonometria) Determine o valor de x+10
por andersontricordiano » Ter Dez 06, 2011 14:36
- 1 Respostas
- 1472 Exibições
- Última mensagem por MarceloFantini

Ter Dez 06, 2011 14:54
Trigonometria
-
- Determine o valor de L para que a função
por Ana Maria da Silva » Qui Mai 09, 2013 12:11
- 0 Respostas
- 1131 Exibições
- Última mensagem por Ana Maria da Silva

Qui Mai 09, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.