• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[função quadrática] UFF ESPECÍFICA

[função quadrática] UFF ESPECÍFICA

Mensagempor JKS » Sex Ago 24, 2012 13:34

Preciso de ajudaa, desde já agradeço .


(UFF) Considere a parábola y = {x}^{2}, a origem O do sistema de eixos coordenados e um ponto Q (m,{m}^{2}) pertence a parábola.

Determine:

a) as coordenadas do ponto R, interseção da mediatriz do segmento OQ com o eixo y

b)O ponto do qual se aproxima R quando Q, percorrendo a parábola, se aproxima da origem.

Resposta -> a)\left(0,\frac{{m}^{2}+1}{2} \right)

b) \left(0,\frac{1}{2}\right)
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [função quadrática] UFF ESPECÍFICA

Mensagempor fraol » Qui Ago 30, 2012 23:29

Boa noite,

Para o ponto M sendo o ponto médio de OQ temos M = ( \frac{m}{2}, \frac{m^2}{2} ).

A reta suporte de OQ tem coeficiente angular a = \frac{m^2}{m} \iff a = m , então o coeficiente angular da reta mediatriz que passa por M é a' = - \frac{1}{m} (pois a mediatriz é perpendicular a OK). Essa mediatriz tem como equação y' = a' \cdot x + y_R. Onde y_R é a ordenada do ponto de interseção da mediatriz com o eixo y. Como o ponto M pertence à mediatriz então:

\frac{m^2}{2} = - \frac{1}{m} \cdot \frac{m}{2} + y_R \iff y_R = \frac{m^2}{2} + \frac{1}{m} \cdot \frac{m}{2} \iff y_R = \frac{m^2}{2} + \frac{1}{2}.

Essa última expressão responde ao item a) da questão, uma vez que o x do ponto R é igual a 0.

Usando a mesma expressão, informalmente, podemos dizer que quando Q, percorrendo a parábola, se aproxima da origem o valor de m tende a zero e, no limite, teremos que y_R =  \frac{1}{2}. E isso responde ao item b), uma vez que ali, também, o x do ponto R é igual a 0.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}