por amyss » Qui Jul 05, 2012 22:37
Oi pessoal, tenho uma dúvida quanto ao seguinte exercício:
![{\left(\sqrt[2]{6} \right)}^{x} : {\sqrt[3]{36}}^{x-1}= 1 {\left(\sqrt[2]{6} \right)}^{x} : {\sqrt[3]{36}}^{x-1}= 1](/latexrender/pictures/71c7f73bf6ac569adae427e1565121cb.png)
Consegui igualar as bases elevando 6 à 0, mas a partir daí, não sei mais o que devo fazer.
-
amyss
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jul 05, 2012 22:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qui Jul 05, 2012 23:06
A sua expressão simplifica-se á:



.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 4079 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
-
- equaçoes exponenciais
por natanskt » Qui Out 07, 2010 13:37
- 7 Respostas
- 4585 Exibições
- Última mensagem por Rogerio Murcila

Qui Out 07, 2010 17:25
Funções
-
- equaçoes exponenciais
por natanskt » Qui Out 07, 2010 13:58
- 6 Respostas
- 3795 Exibições
- Última mensagem por MarceloFantini

Qui Out 07, 2010 17:43
Funções
-
- equações com exponenciais
por Regina » Sex Fev 25, 2011 14:52
- 4 Respostas
- 3208 Exibições
- Última mensagem por Regina

Sex Fev 25, 2011 19:39
Logaritmos
-
- Equações Exponenciais
por umaiafilho » Qui Mai 12, 2011 21:09
- 2 Respostas
- 2357 Exibições
- Última mensagem por umaiafilho

Qui Mai 12, 2011 23:01
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.