• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de mínimo.

Questão de mínimo.

Mensagempor Pri Ferreira » Seg Mai 21, 2012 22:46

Considere a seguinte função: f(x)={x}^{2}-5x+6. Sendo A a soma de suas raízes reais multiplicada pelo valor
da ordenada no ponto em que a parábola toca o eixo y e B a razão entre o valor mínimo e o ponto de mínimo
da função, pode-se afirmar que A+B é:
A) 0 B) 29,9 C) 30 D) 30,1 E) N.R.A.
Não entendi!!Ajuda por favor!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Questão de mínimo.

Mensagempor emsbp » Ter Mai 22, 2012 09:43

Bom dia.
Segundo a minha interpretação do enunciado, primeiramente terás de achar as raízes da parábola. Ou seja, achar os zeros: f(x)=0.
Designemos por x1 e x2 as raízes encontradas.
De seguida, tens de encontrar a ordenada no ponto em que a parábola toca o eixo Oy, ou seja, f(0), pois quando a função intersecta o eixo oy, o x tem de ser obrigatoriamente igual a 0.
Sendo assim, A=(x1+x2)f(0).
Quanto ao valor de B, tens de determinar o valor mínimo e o minimizante(abcissa do mínimo). Para tal, poderás utilizar a derivada da função f.
Como pede a razão entre o mínimo e o minimizante, B=\frac{valor mínimo}{minimizante}.
Depois é só somar A com B.
Espero ter ajudado.
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Questão de mínimo.

Mensagempor Pri Ferreira » Ter Mai 22, 2012 21:47

Obrigada pela ajuda.
Eu fiz e encontrei como resposta 30,625, não está entre as opções, por isso pedi ajuda...
A resposta é do gabarito é 29,9.
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59