• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função inversa

função inversa

Mensagempor tigre matematico » Qui Out 13, 2011 12:45

considere a real f definida por f(x)=4x+2+|x-2|.A função f admite inversa? Em caso afirmativo determine sua inversa.
tigre matematico
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Out 13, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: função inversa

Mensagempor Guill » Sáb Abr 21, 2012 18:07

f(x)=4x+2+|x-2|


A função modular é uma função que não aceita valores negativos. Nesse caso, temos uma mistura de função modular com função não-modular. Essa função pode ser escrita da seguinte maneira:

f(x)=(4x+2)+(x-2), \rightarrow (2 ; \infty)} || (4x+2)-(x-2), \rightarrow(-\infty ; 2)

f(x)= 5x, \rightarrow (2 ; \infty)} || 3x + 4, \rightarrow(-\infty ; 2)


Agora, basta fazer a função inversa de cada uma nesse mesmo intervalo:


f^{-1}(x)= \frac{x}{5}, \rightarrow (2 ; \infty)} || \frac{x-4}{3}, \rightarrow(-\infty ; 2)
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.