• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação Modular] com expressão

[Inequação Modular] com expressão

Mensagempor Lara_cardoso » Qui Abr 05, 2012 14:42

No exercício diz o seguinte:
Sendo f e g funções reais definidas por f(x) =\left|x - 3 \right| e g(x) = \left|x + 3 \right|, determine o valor de \left(f.\left[g\left(-5 \right) \right] \right)

Já tentei substituindo os valores de f e g, já tentei resolvendo os módulos e colocando a resposta na expressão, mas nunca dá a resposta certa, que é 1. Devo está fazendo alguma coisa errada (óbvio) Quem puder ajudar, ficarei grata :D
Lara_cardoso
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 05, 2012 11:55
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Inequação Modular] com expressão

Mensagempor Lucio Carvalho » Qui Abr 05, 2012 19:01

Olá Lara,
g(-5)=\left|-5+3 \right|=\left|-2 \right|=2

f\left[g\left(-5 \right) \right]=f\left(2 \right)=\left|2-3 \right|=\left|-1 \right|=1

Espero ter ajudado.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: [Inequação Modular] com expressão

Mensagempor Lara_cardoso » Qui Abr 05, 2012 20:18

Ajudou sim, obrigada (:
Lara_cardoso
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 05, 2012 11:55
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}