por Rafael16 » Seg Mar 05, 2012 16:35
Boa tarde pessoal!
Tenho uma dúvida na seguinte função, vamos lá:
y = |x² + 2x - 3|
De acordo com a definição de módulo, eu fiz o seguinte:
y = x² + 2x - 3 se x² + 2x - 3 ? 0 (I)
y = -x² - 2x + 3 se x² + 2x - 3 < 0 (II)
(I) x² + 2x - 3 ? 0
raízes: x' = 1 e x'' = -3
Para que a primeira (I) função seja ? 0, então x ? -3 ou x ? 1
Eu acho que até aqui tudo bem.
(II) -x² - 2x + 3 < 0
raízes: x' = 1 e x'' = -3
O que eu não entendi é o seguinte: para que essa função seja menor que 0, então x < -3 ou x > 1.
Mas o meu livro está que -3 < x < 1.
Gostaria que pudesse me explicar o porque disso, pois a função (I) tem concavidade para cima e (II) tem concavidade para baixo.
Valeu gente!
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por nietzsche » Seg Mar 05, 2012 17:04
Rafael16,
você pode pensar no problema da seguinte forma:
|x² + 2x - 3| = |x-1||x+3|
Agora você analisa os casos possíveis.
A função módulo f(x) = |x| é >=0, para todo x real.
Mas você disse: "para que essa função seja menor que 0, então x < -3 ou x > 1." Para x = 2, temos y<0. Isso contrária essa propriedade (definição) de que a função módulo tem valor maior ou igual a zero.
Tem exercícios e exemplos feitos passo a passo desse tipo que você procura no livro do Guidorizzi, volume 1.
Outra fonte que pode ajudar é:
http://en.wikipedia.org/wiki/Absolute_value
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Rafael16 » Seg Mar 05, 2012 17:09
nietzsche escreveu:Rafael16,
você pode pensar no problema da seguinte forma:
|x² + 2x - 3| = |x-1||x+3|
Agora você analisa os casos possíveis.
A função módulo f(x) = |x| é >=0, para todo x real.
Mas você disse: "para que essa função seja menor que 0, então x < -3 ou x > 1." Para x = 2, temos y<0. Isso contrária essa propriedade (definição) de que a função módulo tem valor maior ou igual a zero.
Tem exercícios e exemplos feitos passo a passo desse tipo que você procura no livro do Guidorizzi, volume 1.
Outra fonte que pode ajudar é:
http://en.wikipedia.org/wiki/Absolute_value
Obrigado nietzsche
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funçao modular
por Fiel8 » Sex Jul 10, 2009 19:25
- 1 Respostas
- 2525 Exibições
- Última mensagem por Molina

Sex Jul 10, 2009 21:50
Funções
-
- Função Modular
por geriane » Sáb Abr 03, 2010 21:32
- 3 Respostas
- 2984 Exibições
- Última mensagem por Molina

Dom Abr 04, 2010 12:57
Funções
-
- Funçao modular
por Skcedas » Qua Mai 26, 2010 19:29
- 6 Respostas
- 5145 Exibições
- Última mensagem por netlopes

Ter Jun 08, 2010 18:11
Funções
-
- Função Modular
por DanieldeLucena » Seg Set 20, 2010 18:03
- 1 Respostas
- 2148 Exibições
- Última mensagem por MarceloFantini

Seg Set 20, 2010 19:35
Funções
-
- Função Modular
por Pri Ferreira » Ter Nov 22, 2011 18:20
- 1 Respostas
- 1785 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 18:56
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.