• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dominio de validade!

Dominio de validade!

Mensagempor Victor_tnk » Sáb Fev 18, 2012 15:20

A função real f(x) = \frac{2x}{\sqrt[2]{x^2-2x+1}+{\sqrt[2]{x^2+2x+1}}} tem domínio de validade igual a:

a) R
b) R, exceto {1}
c) R, exceto{-1}
d)R, exceto{-1,1}
e)R+

bom pelas minhas contas percebi que há dois trinômios quadrados perfeitos: \frac{2x}{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}}
Usei a condição de existência :
{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}} \neq 0
e em seguida os deixei na forma de módulo :
\left|x+1 \right| + \left|x-1 \right| \neq 0

Meu resultado deu : x\neq 0 o que não bateu com nenhuma das respostas..
Alguém poderia me ajudar? esta questão me deu uma boa dor de cabeça e mesmo assim não consegui resolver.
Gostaria de saber o que eu fiz de errado, desde já agradeço muito.
Victor_tnk
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 18, 2012 14:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dominio de validade!

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:48

Victor_tnk escreveu:A função real f(x) = \frac{2x}{\sqrt[2]{x^2-2x+1}+{\sqrt[2]{x^2+2x+1}}} tem domínio de validade igual a:

a) R
b) R, exceto {1}
c) R, exceto{-1}
d)R, exceto{-1,1}
e)R+


Victor_tnk escreveu:bom pelas minhas contas percebi que há dois trinômios quadrados perfeitos: \frac{2x}{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}}


Ok.

Victor_tnk escreveu:Usei a condição de existência :
{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}} \neq 0
e em seguida os deixei na forma de módulo :
\left|x+1 \right| + \left|x-1 \right| \neq 0


Na verdade, como temos a presença de raízes quadradas, as expressões que aparecem dentro delas não podem ser negativas. Ou seja, devemos ter as condições:

(i) (x+1)^2 \geq 0

(ii) (x-1)^2 \geq 0

Por outro lado, não pode haver uma expressão nula no denominador. Então precisamos também da condição:

(iii) \sqrt{(x+1)^2}+\sqrt{(x-1)^2} \neq 0

Note que os números \sqrt{(x+1)^2} e \sqrt{(x-1)^2} são sempre positivos. Portanto, para que sua soma seja igual a zero, seria necessário que esses dois números fossem zero. Entretanto, não há número real x que faça com que os números \sqrt{(x+1)^2} e \sqrt{(x-1)^2} sejam ambos iguais a zero. Conclusão: não importa o valor do número real x, sempre teremos a condição (iii) atendida.

Dessa forma, precisamos nos preocupar apenas com as condições (i) e (ii).

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dominio de validade!

Mensagempor Victor_tnk » Dom Fev 19, 2012 03:55

Muito obrigado mesmo! Ajuda surreal!
Consegui solucionar deste modo..

Mas agora me surgiu uma dúvida:
\sqrt[2]{(x+1)^2} + \sqrt[2]{(x-1)^2}
Eu não poderia simplesmente cortar o indice com o expoente? ficando:
(x+1)+(x-1)=2x (denominador)
assim ficaria f(x)= \frac{2x}{2x}, sendo o domínio podendo assumir qualquer numero real menos 0..
Entretanto deste modo não bate com o gabarito, gostaria de saber qual é o erro nessa jogada..
Muito obrigado!
Victor_tnk
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 18, 2012 14:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dominio de validade!

Mensagempor LuizAquino » Dom Fev 19, 2012 07:47

Victor_tnk escreveu:Mas agora me surgiu uma dúvida:
\sqrt[2]{(x+1)^2} + \sqrt[2]{(x-1)^2}
Eu não poderia simplesmente cortar o indice com o expoente? ficando:
(x+1)+(x-1)=2x (denominador)
assim ficaria f(x)= \frac{2x}{2x}, sendo o domínio podendo assumir qualquer numero real menos 0..


Você não pode fazer isso. Lembre-se que: \sqrt{a^2} = |a| .

Desse modo, simplificando o expoente com o índice, ficaríamos com:

f(x) = \frac{2x}{|x+1| + |x-1|}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D