• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[funções inversas]

[funções inversas]

Mensagempor Ana_Rodrigues » Ter Jan 24, 2012 17:46

Eu não entendo essas transformações!

Por exemplo:

1) cos(sen{}^{-1})=\sqrt[]{1-{x}^{2}}

ou então:

2) sen(tg{}^{-1}x)=\frac{x}{\sqrt[]{1+{x}^{2}}}

Não entendo essas simplificações. Não sei como chegar aos resultados mostrados.

Peço a quem souber, que me ajude a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [funções inversas]

Mensagempor LuizAquino » Ter Jan 24, 2012 19:47

Ana_Rodrigues escreveu:1) \cos(\textrm{sen}^{-1}\, x)=\sqrt[]{1-{x}^{2}}


Você deve saber que:

\cos^2 \theta + \textrm{sen}^2 \,\theta = 1

Disso podemos concluir que:

\cos \theta  = \sqrt{1 - \textrm{sen}^2 \,\theta} (se \theta for um ângulo do primeiro ou do quarto quadrante).

Considere agora o ângulo \theta = \textrm{sen}^{-1} x . Suponha que ele seja do primeiro ou do quarto quadrante. Temos que:

\cos (\textrm{sen}^{-1} x)  = \sqrt{1 - \textrm{sen}^2 (\,\textrm{sen}^{-1} x)}

Você deve saber que \textrm{sen}^{-1} representa a função inversa do seno.

Além disso, você deve saber que se f^{-1} é a função inversa de f, então é válida a propriedade f\left(f^{-1}(x)\right) = x .

Por outro lado, você também deve saber que \textrm{sen}^2 \, \theta = \left(\textrm{sen} \, \theta\right)\cdot \left(\textrm{sen} \, \theta\right) = \left(\textrm{sen} \, \theta\right)^2 .

Usando essas informações, temos que:

\cos (\textrm{sen}^{-1} x)  = \sqrt{1 - \left[\textrm{sen} (\,\textrm{sen}^{-1} x)\right]^2} = \sqrt{1-x^2}

Ana_Rodrigues escreveu:2) \textrm{sen}\,(\textrm{tg}^{-1}\, x)=\frac{x}{\sqrt{1+{x}^{2}}}


A ideia é parecida com a anterior.

Mas lembre-se que usando \cos^2 \theta + \textrm{sen}^2 \,\theta = 1 e \textrm{tg}\, \theta = \frac{\textrm{sen}\, \theta}{\cos \theta} podemos obter que:

\textrm{sen}\, \theta = \frac{\textrm{tg}\,\theta}{\sqrt{1+\textrm{tg}^2\,\theta}} (se \theta for um ângulo do primeiro ou do terceiro quadrante).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [funções inversas]

Mensagempor Ana_Rodrigues » Ter Jan 24, 2012 22:33

Muito obrigada! :-D
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}