• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função]-Dúvida

[Função]-Dúvida

Mensagempor Martnel » Sex Set 30, 2011 08:13

Alguém pode me ajudar? Na internet já encontrei duas soluções diferentes para o mesmo exercício; tentei solucionar, mas estou em dúvida quanto à solução correta:
Problema:

Um lote retangular da prefeitura municipal precisa ser murado. A secretaria de obras contratou duas turmas de trabalhadores, cada uma será responsável pela metade do perímetro do terreno. Uma turma vai receber R$12,00 por metro linear de muro e a outra R$15,00. O orçamento previsto de mão-de-obra para o serviço é de R$2.430,00. Pede-se:
a) Construir a função de correspondência entre a área e o lado x do terreno;
b) Determinar o domínio e a imagem dessa função.

Definição das variáveis:

x = dimensão de um lado do terreno;
y = dimensão do outro lado do terreno;
P = perímetro do terreno;
A = área do terreno.
Em função do lado x:

Área do terreno S = x*y ---->
Perímetro do terreno P= (x+y)+(x+y)

(12.P/2)+(15.P/2)= 2430 27P/2=2430 13,5P=2430 P=2430/13,5 P=180 ou seja
90*12,00+90*15,00=R$ 2430,00 1080,00+1350,00=2430,00
P=2(x+y)=180 x+y=180/2 x+y=90 (um lado menor + um lado maior do retângulo).
y=90-x
S=x*y (lado menor vezes lado maior) S=x*90-x Área do terreno= -{x}^{2}+90x
a= -1 ; b= 90; c=0

x^{1}=\frac {-b-\sqrt[]{\Delta}} {2a}\Rightarrow x^{1}=\frac {-90-90} {2*-1}\Rightarrow \frac {-180} {-2}\Rightarrow x^{1}=90

x^{2}=\frac {-b+\sqrt[]{\Delta}} {2a}\Rightarrow x^{2}=\frac {-90+90} {2*-1}\Rightarrow \frac {0} {-2}\Rightarrow x^{2}=0

Raízes da função:
x^{1}= 90 e x^{2}=0

{x}_{v}=\textstyle- \frac{b}{2a}\Rightarrow {x}_{v}=-\textstyle- \frac{90}{-2}\Rightarrow{x}_{v}=45
{S}_{v}=\textstyle- \frac{\Delta}{4a}\Rightarrow {S}_{v}=\textstyle \frac{-8100}{-4}\Rightarrow{S}_{v}=2025
Coordenadas do vértice; (45, 2025)
Domínio: 0<x<90
Imagem: 0<S<2025

Será que está correto?
Martnel
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 25, 2011 21:41
Formação Escolar: ENSINO MÉDIO
Área/Curso: Administração
Andamento: cursando

Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}