• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função afin .

Função afin .

Mensagempor albtec01 » Sáb Mai 14, 2011 00:35

Estou com dúvida nestes 02 exercícios abaixo, como faço para resolver estes problemas? Minha dúvida é a seguinte como faço para resolver problema sem a incógnita x, onde substituir a função?

01) Seja f uma função que tem a propriedade f(x+1)=2f(x)+1,para todo x pertencente aos reais. Sabendo que f(1)= -5, calcule:

a) f(0) b) f(2) c) f(4) Resp: a) -3 b) -9 c) -33




02) Seja f uma função com domínio nos números reais que tem, para todo x real, a propriedade; f(mx)=mf(x)+1, sendo m uma constante real não nula. Se f(0)= -1/2, obtenha:

a) o valor de m; b) os valores de f(9) e f(81), supondo que f(3)=2. Resp: a) 3 b) f(9)=7; f(81)=67
albtec01
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 13, 2011 22:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função afin .

Mensagempor DanielRJ » Sáb Mai 14, 2011 15:13

Double post..
Este Topico já foi respondido.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}