• Anúncio Global
    Respostas
    Exibições
    Última mensagem

unimontes - 2004

unimontes - 2004

Mensagempor PHANIE » Qua Mar 30, 2011 16:07

Seja f uma função real de variável real definida por f ( x ) = -x + 2 , se -1 < x < 2 ; x^2 + ax +b , se x < ou igual -1 ou x > ou igual 2
os valores de a e b , para que o grafico de f nao tenha ruptura , são , respectivamente:


eu nao entendi como o grafico ira ter uma ruptura.... tentei montar um sistema substituindo os valores mas nao consegui achar a resposta certa.
PHANIE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 30, 2011 15:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: PATOLOGIA
Andamento: formado

Re: unimontes - 2004

Mensagempor LuizAquino » Qua Mar 30, 2011 17:59

Eis a função do exercício:
f(x)=
\left\{\begin{array}{ll}
-x+2 &\textrm{, se } -1 < x  < 2 \\
x^2 +ax + b & \textrm{, se } x\leq -1 \textrm{ ou } x \geq 2
\end{array}
\right.

Para não ter "ruptura", se você substituir x por -1 em -x+2 e em x^2+ax+b o resultado deve ser o mesmo. Isso também deve acontecer para x substituído por 2.

Desse modo, você terá que resolver o seguinte sistema:
\left\{\begin{array}{l}
-(-1)+2 = (-1)^2+a\cdot (-1)+b \\
-(2)+2 = (2)^2+a\cdot 2+b \\
\end{array}
\right.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: unimontes - 2004

Mensagempor profmatematica » Qua Mar 30, 2011 18:58

F(x)=-x+2 -1<x<2 reta decrescente substitui x por -1 e 2 entao tu vais encontrar A(-1,3) e B(2,0) ok? Para que o grafico seja continuo vc deve calcular a e b de modo que as interseccoes das 2 funcoes sejam no ponto A e B entao se f(x)=x^2 +ax+b substitui x por -1 e 2 dai vc vai encontrar um sistema e resolvendo esse sistema tu vais encontrar -2 e 0
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59