• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função dicas.

Função dicas.

Mensagempor gustavoluiss » Dom Fev 20, 2011 15:16

Oscar arremessa uma bola de basquete cujo centro segue uma trajetória plana vertical de equação y = - 1/7x² + 8/7x + 2 , na qual os valores de x e y são dados em metros.
Oscar acerta o arremesso e o centro da bola passa pelo centro da cesta, que está a 3 m de altura. Determine a distância do centro da cesta ao eixo y.


Se a altura é 3m, significa que y = 3.

y = - 1/7x² + 8/7x + 2
3 = - 1/7x² + 8/7x + 2
Multiplicando a equação por 7:
3.7 = (-1 . 7 / 7).x² + (8 . 7 / 7).x + 2 . 7
21 = -x² + 8x + 14
x² - 8x + 21 -14 = 0
x² - 8x + 7 = 0

Resolvendo pelo método da Soma e Produto:
Soma das raízes = - b = - ( - 8) = 8
Produto das raízes = c = 7

Então as raízes são:
x' = 1
x" = 7

Como no ponto em que x = 1 a bola ainda está subindo e no ponto
x = 7 a bola está descendo, a distância do centro da cesta ao eixo y é de 7 m.


TEM DUAS RESPOSTAS PQ A DE 7 METROS ESTÁ CERTA ??

A DE 1 METRO SERIA DA ALTURA DO GAROTO PRA ALTURA DA CESTA ??
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Função dicas.

Mensagempor LuizAquino » Dom Fev 20, 2011 16:19

gustavoluiss escreveu:Tem duas respostas. Por que a de 7 metros está certa??

Veja a figura abaixo:
bola-basquete.png


Ao subir, a bola atinge os 3 m quando x=1. Mas, estamos interessados no momento em que a bola descer e atingir os 3 m. Isto é, quando x=7.

gustavoluiss escreveu:A de 1 metro seria da altura do garoto pra altura da cesta??

Não, como você pode ver na figura. Considerando que o garoto está na origem do sistema de eixos, quando a bola arremessada percorrer uma distância horizontal de 1 m, a altura dela será de 3 m.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}