• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções.

Funções.

Mensagempor 380625 » Sex Fev 18, 2011 17:50

Não consigo resolver de jeito nenhum esse exercicio:

[x]^1/2+[x+12]^1/2=6.

Tentei fazer elevando os dois lados ao quadrado mas assim tenho uma resposta diferente.

Grato se alguem me ajudar.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Funções.

Mensagempor LuizAquino » Sáb Fev 19, 2011 10:16

Exercício: x^{\frac{1}{2}}+(x+12)^{\frac{1}{2}}=6

Essa equação é a mesma que:
\sqrt{x}+\sqrt{x+12}=6

Note que na primeira raiz devemos ter x\geq 0 para que não apareça a raiz de um número negativo. Já na segunda raiz, devemos ter x\geq -12 para que não apareça um número negativo dentro da raiz. Ora, sabemos que se x é um número tal que x\geq 0, então é verdade que x\geq -12. Portanto, a solução dessa equação deve ser tal que x\geq 0 para que não apareça raízes de números negativos.

Isolando uma das raízes no primeiro membro:
\sqrt{x+12}=6-\sqrt{x}

Elevando ao quadrado ambos os membros e lembrando-se que x\geq 0, obtemos:
x+12=36-12\sqrt{x}+x

Isolando novamente a raiz em apenas um dos membros e elevando ao quadrado:
(-24)^2 = (-12\sqrt{x})^2

x=4


Observação
Vale a pena lembrar que se a\in\mathbb{R}, então \left(\sqrt{a}\right)^2=|a|. Isto é, se você não sabe se o número a que está dentro da raiz é negativo ou positivo, então deve usar a simplificação \left(\sqrt{a}\right)^2=|a|. Por outro lado, se você tem certeza que o número a é positivo, então pode fazer a simplificação \left(\sqrt{a}\right)^2=a.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: