por simas4387 » Qua Nov 24, 2010 16:40
Alguem poderia ajudar a resolver essa questão por favor?
A pressão atmosférica, P, é frequentemente modelada via funções exponenciais. A pressão ao nível do mar é de 1013 milibares e sofre um decréscimo de 14% a cada quilometro acima do nível do mar.
Pede-se
a) Encontre a expressão que nos fornece a pressão P de acordo com a altura (em Km) acima do nível do mar.
b) Qual é a expressão atmosférica a 2km acima do nível do mar? E a 10 km?
tentei resolver da seguinte forma
a) p (h) = P0
quando h = 0 vc tem 1013.10-³
quando h = 1 vc tem 0,86 P0
quando h = 2 vc tem p 0,86 (0,86 P0)
então P (h) = 0,86 . h 1013.10-³
para encontrar a expressão
agora para a letra b eu ainda não consegui solução, poderiamos socializar a questão
-
simas4387
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 24, 2010 16:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por simas4387 » Sex Dez 03, 2010 18:46
Consegui realizar dessa forma, infelizmente ninguem compartilhou mas a partir daqui gostaria que pudessem dar seu parecer Obrigado a todos
Resolução:
letra a)
P (h) = 1013 . (0,86)k = ou seja 86/100 = 0,86
P(h) = 1013.(0,86)² = 0,86. onde k representa a altura em km do nível do mar.
letra b)
(b) Qual é a pressão atmosférica a 2 km acima do nível do mar?
E a 10 km?
Resolução:
Quando 1 km você tem P 0,86
Quando 2 km você tem P (0,86)² = 1013 . (0,7396) = 749,21 milibares
Quando 10 km você tem P (0,86)10 = 1013 . ( 0,2213014) = 224,17 milibares
-
simas4387
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 24, 2010 16:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções Exponenciais]
por nicolascalcagnoto » Qua Set 07, 2011 20:29
- 21 Respostas
- 12618 Exibições
- Última mensagem por MarceloFantini

Qui Set 15, 2011 16:00
Funções
-
- [Funções Exponenciais]
por nicolaspsy » Ter Set 20, 2011 02:05
- 1 Respostas
- 1736 Exibições
- Última mensagem por MarceloFantini

Qua Set 21, 2011 21:42
Funções
-
- Funcoes exponenciais
por Petrincha » Dom Jan 15, 2012 19:51
- 8 Respostas
- 4697 Exibições
- Última mensagem por Petrincha

Dom Jan 15, 2012 20:51
Funções
-
- [Funções exponenciais] Exercícios
por Texas » Qui Set 22, 2011 16:34
- 3 Respostas
- 2092 Exibições
- Última mensagem por MarceloFantini

Qui Set 22, 2011 19:23
Funções
-
- Derivadas de funções Exponenciais
por Ana Maria da Silva » Dom Jun 30, 2013 13:33
- 3 Respostas
- 4026 Exibições
- Última mensagem por Molina

Sex Jul 12, 2013 22:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.