por Danilo » Ter Ago 14, 2012 00:52
Não estou conseguindo simplificar uma expressão...
![\frac{b-a}{a+b} \cdot \left[{a}^{\frac{1}{2}} \cdot {\left({a}^{\frac{1}{2}} - {b}^{\frac{1}{2}} \right)}^{-1} - {\left(\frac{{a}^{\frac{1}{2}} + {b}^{\frac{1}{2}}}{{b}^{\frac{1}{2}}} \right)}^{-1} \right] \frac{b-a}{a+b} \cdot \left[{a}^{\frac{1}{2}} \cdot {\left({a}^{\frac{1}{2}} - {b}^{\frac{1}{2}} \right)}^{-1} - {\left(\frac{{a}^{\frac{1}{2}} + {b}^{\frac{1}{2}}}{{b}^{\frac{1}{2}}} \right)}^{-1} \right]](/latexrender/pictures/a12db7aad1d0d1de141afe911f6f4e8f.png)
tentei fazer assim:

![\frac{b-a}{a+b} \left(\frac{\sqrt[]{a}}{\sqrt[]{a} - \sqrt[]{b}} - \frac{\sqrt[]{b}}{\sqrt[]{a} + \sqrt[]{b}} \right) \frac{b-a}{a+b} \left(\frac{\sqrt[]{a}}{\sqrt[]{a} - \sqrt[]{b}} - \frac{\sqrt[]{b}}{\sqrt[]{a} + \sqrt[]{b}} \right)](/latexrender/pictures/cfd64f0ae2b92367b758c9581fae56c3.png)
racionalizando,
![\frac{b-a}{a+b} \left(\frac{a + 2\sqrt[]{ab} - b}{a - b} \right) \frac{b-a}{a+b} \left(\frac{a + 2\sqrt[]{ab} - b}{a - b} \right)](/latexrender/pictures/48b2f3cc54195f65ebdff46da8b0a6de.png)
e é aqui que eu travo. Dá uma conta chata mas eu não consigo chegar no resultado, que é -1.
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Ter Ago 14, 2012 01:10
Você errou algumas contas:

. Daí,

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Danilo » Ter Ago 14, 2012 01:25
MarceloFantini escreveu:Você errou algumas contas:

. Daí,

.
tudo por um sinal... valeu

-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em expressão
por ginrj » Sex Mar 06, 2009 18:45
- 2 Respostas
- 4227 Exibições
- Última mensagem por ginrj

Sáb Mar 07, 2009 12:01
Álgebra Elementar
-
- Expressão duvida !!!
por LuizCarlos » Qui Ago 11, 2011 14:57
- 1 Respostas
- 1642 Exibições
- Última mensagem por Molina

Qui Ago 11, 2011 16:40
Álgebra Elementar
-
- Dúvida sobre ''sinal da expressão ax+b''
por Danilo » Dom Abr 22, 2012 03:41
- 5 Respostas
- 2964 Exibições
- Última mensagem por DanielFerreira

Ter Abr 24, 2012 20:20
Álgebra Elementar
-
- [Expressão Númerica] Dúvida ambigua
por umbrorz » Qui Mai 10, 2012 15:23
- 2 Respostas
- 2104 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:06
Funções
-
- Dúvida exercício expressão logaritima
por kalanicastanho » Seg Mai 30, 2016 09:30
- 1 Respostas
- 3383 Exibições
- Última mensagem por nakagumahissao

Seg Mai 30, 2016 23:10
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.