• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração

Demonstração

Mensagempor Guill » Qua Jun 13, 2012 09:09

Há pouco tempo, eu venho trabalhando em uma demonstração para a seguinte poposição:

''Se n é um número natural, entre n e 2n existe sempre pelo menos um primo.''


Eu consegui demonstrar isso fragmentando a demonstração em 2 partes:

* Se n não é primo (tenho certeza de que está certo)
* Se n é primo (tenho dúvidas a respeito da veracidade dessa parte)



A demonstração é assim:

Dentre os números naturais, podem haver números que satisfazem e que não satisfazem a proposição. Mas sabemos que , dentre os que não satisfazem, existe um que foi o primeiro de todos a não satisfazer. Vamos supor que esse número é n e que ele não seja primo.
Como ele é o primeiro, sabemos que (por hipótese) entre n e 2n não há primos. No entanto isso acarreta em um absurdo, pois o seu antecessor (n - 1) possui entre ele e 2(n - 1), apenas alguns números entre n e 2n e o próprio n que não é primo.
Daí ele passa a ser o primeiro. Esse absurdo prova a primeira parte.


Vamos supor que o primeiro de todos a não satisfazer a proposição seja o n-ésimo primo, ou seja, entre {p}_{n} e 2.{p}_{n} não existe um primo. Podemos, com isso, afirmar duas coisas:

{p}_{n+1} > {p}_{n} (óbvia)

{p}_{n+1}>2.{p}_{n} (O próximo primo está fora do intervalo)


Subtraíndo a primeira inequação da segunda, vemos o absurdo:

0>{p}_{n}





A questão é que eu não tenho certeza quanto á veracidade da segunda proposição. Além disso, pode-se ver claramente que a demonstração depende das duas demonstrações. Está correto ??
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}