• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Prova por contraposição] Montar a contraposição

[Prova por contraposição] Montar a contraposição

Mensagempor fegnus » Sáb Abr 14, 2012 18:14

Prove por contraposição que a diferença entre os cubos de dois números consecutivos é ímpar. Para tal, considere os
seguintes dados: a) se o cubo de um número for par, então esse número será par; b) se o cubo de um número for ímpar, então
esse número será ímpar; c) a soma (ou subtração) de dois números pares resulta em um número par; d) a soma (ou subtração)
de dois números ímpares resulta em um número par."


A dificuldade que estou tendo é que nas provas por contraposição temos uma proposição que pode ser transformada em uma contraposição: P ? Q <=> ~Q ? ~P
Mas no enunciado: a diferença entre os cubos de dois números consecutivos é ímpar, não sei como formar a contraposição.

Dos exemplos que vi para provar com contraposição sempre é dada uma afirmação do tipo "se alguma_coisa então outra_coisa"
fegnus
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 14, 2012 18:04
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}