• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UFU-MG

Questão da UFU-MG

Mensagempor Kelvin Brayan » Dom Abr 24, 2011 20:36

Sabendo-se que 302 400 = 64x27x25x7, pode-se concluir que o número de divisores de 302 400, que são múltiplos de 6, é igual a?

Eu já achei que 302 400 tem 168 divisores, mas como faço para descobrir o número de divisores múltiplos de 6 ? *-)
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Questão da UFU-MG

Mensagempor LuizAquino » Dom Abr 24, 2011 21:07

mas como faço para descobrir o número de divisores múltiplos de 6 ? *-)


Para que um número seja múltiplo de 6 ele deve ser múltiplo de 2 e 3 ao mesmo tempo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão da UFU-MG

Mensagempor Kelvin Brayan » Dom Abr 24, 2011 23:03

Tudo bem... mas qual é o procedimento que devo tomar para descobrir a quantidade de números divisores de 302 400 e múltiplos de 6 ? Como vou descobrir isso?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Questão da UFU-MG

Mensagempor LuizAquino » Dom Abr 24, 2011 23:26

Assim como foi feito no tópico [1], você pode determinar quantos são os divisores que não são múltiplos de 6. Em seguida, basta subtrair o total de divisores pelo total de divisores que não são múltiplos de 6.

Referência
[1] Questão UFV-MG - viewtopic.php?f=106&t=4513
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão da UFU-MG

Mensagempor Kelvin Brayan » Seg Abr 25, 2011 01:06

Desculpem-me pela ignorância, mas será que alguém poderia resolver essa questão para mim ? Assim, eu poderia ver como se faz. Estou "enroscado" ainda somente nessa questão.


Obrigado !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Questão da UFU-MG

Mensagempor LuizAquino » Seg Abr 25, 2011 10:26

Sabemos que 302.400 = 2^6 \cdot 3^3 \cdot 5^2 \cdot 7 .

Como eu havia sugerido, vejamos quantos são os divisores que não são múltiplos de 6.

Para que o divisor não seja múltiplo de 6, os fatores 2^6 e 3^3 não podem aparecer ao mesmo tempo.

Desse modo, queremos saber quantos são os divisores formados por:
  • 5^2 \cdot 7 -- teremos (2+1)(1+1) = 6 divisores.
  • 2^6\cdot 5^2 \cdot 7 -- teremos 6(2+1)(1+1) = 36 divisores. Note que no fator 2^6 nós não podemos contabilizar a possibilidade 2^0, por esse motivo usamos 6 ao invés de (6+1).
  • 3^3\cdot 5^2 \cdot 7 -- teremos 3(2+1)(1+1) = 18 divisores. Novamente, nós não podemos contabilizar a possibilidade 3^0, por esse motivo usamos 3 ao invés de (3+1).

Total de divisores que não são múltiplos de 6: 6 + 36 + 18 = 60.

Total de divisores: (6+1)(3+1)(2+1)(1+1) = 168.

Total de divisores que são múltiplos de 6: 168 - 60 = 108.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão da UFU-MG

Mensagempor Kelvin Brayan » Seg Abr 25, 2011 10:54

Ouu valeu mesmo ein!
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59