• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: classes de equivalência

Álgebra: classes de equivalência

Mensagempor Caeros » Sex Mar 18, 2011 20:59

Seja R uma relação sobre Q definida da forma seguinte xRy ? x – y ? Z. Provar que R é uma relação de equivalência e descrever a classe [1].

Bem entendo que é uma relação de equivalência:
(1,4) ? R, pois, 1-4 = -3 ? Z;
(4,1) ? R, pois, 4-1= 3 ? Z;
(1,1) ? R, pois, 1-1=0 ? Z.
Mas em relação a descrever classes de [1] só compreendo que todos os números inteiros podem manter relação de equivalência com este, então [1]=Z.
Então gostaria dos colegas derem seus parecerem se concordam com esta resposta ou se há uma resposta melhor, mais completa???? :?: :?: :?: :?: ;)
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.