• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: uma dúvida

Álgebra: uma dúvida

Mensagempor Caeros » Sex Mar 18, 2011 14:50

Sejam A = R e \Re uma relação definida em R por:
x\Rey\:\Leftrightarrow\:0\leq\:x-y\:\leq\:1
Mostre que \Re o {\Re}^{-1}= {(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}
Por definição de composição de relações temos:
\Re\:o\:{\Re}^{-1}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:(x,y)\:\in\:{\Re}^{-1}\:e\:(y,z)\:\in\:\Re}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:(y,x)\:\in\:\Re\:e\:(y,z)\:\in\:\Re}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1}
Seja S = {(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}.
Devemos mostrar que \Re o {\Re}^{-1}= S.
De fato,
(x,y)\:\in\:\Re\:o\:{\Re}^{-1}\Rightarrow\:0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1
mas,
0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1
\Rightarrow\:y-z\leq1
\Rightarrow\:y-z\leq1+y-x
\Rightarrow\:x-z\leq1

0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1
\Rightarrow\:y-x\leq1
\Rightarrow\:y-x\leq1+y-z
\Rightarrow\:-1\leq\:x-z

assim;

0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1\:\Leftrightarrow\:-1\leq\:x-z\leq\:1\:\Leftrightarrow\:|x-z|\leq\:1

Então (x,z) \in S isto é, \Re o {\Re}^{-1}\:\subseteq\:S

Reciprocamente, seja (x;z) \in S ,então
|x-z|\leq\:1.

Tomando y = max{x;z} temos
(a partir deste ponto tenho uma dúvida, desta resolução o termo "tomando y=max{x,z}" tem qual implicação na solução? :?: :?: , significa que dos dois x e y devemos "pegar" o maior? :?: :?: , mas porquê? :?: :?: )
e continua:
0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1

daí, (x,y) \subseteq\:\Re\:o\:{\Re}^{-1}, isto é, S \:\subseteq\:\Re\:o\:{\Re}^{-1}.
Portanto,
\Re\:o\:{\Re}^{-1} ={(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.