• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Teoria dos conjuntos4

Álgebra: Teoria dos conjuntos4

Mensagempor Caeros » Dom Mar 13, 2011 01:25

Caros colegas;
Me ajudem a melhorar esta solução a que dei a esta questão, me enviando correções, dicas para enriquecer, etc!!


Quais as seguintes sentenças abertas definem uma relação de equivalência em N (conjunto dos número naturais)?
a) xRy? \exists k ? Z tal que x-y=3k
b) x divide y;
c) x ? y;
d) m,d,c (x,y)=1;
e) x+y=10.

Solução:
a) i) Para cada x ? N, como x-x=0=3.0, tem-se que : xRx, portanto xRy é reflexiva em N;
ii) Se xRy, então existe k ? Z tal que x-y=3k, consequentemente, y-x= - (x-y)=3(-k); ou seja, yRx, logo xRy é uma relação simétrica em N;
iii) Se xRy e yRz, então x-y=3{k}_{1}\:e\: y-z=3{k}_{2}; para certos inteiros {k}_{1}\:e\:{k}_{2}, portanto:
x-z=(x-y)+(y-z)=3({k}_{1}+{k}_{2}) ou seja, xRz, logo xRy é uma relação transitiva;
logo é equivalente em N;
b) x/y
i) para cada x ? N , como x/x=1 e 1 ? N tem-se que xRx, portanto xRy é reflexiva;
ii) xRy ? x/y não é uma relação de equivalência em N, pois, xRy não é simétrica:
por exemplo: 4/2 ? N, mas 2/4 \not\in a N ;
c) x ? y; i) xRy ? x ? y não é uma relação de equivalência em N, pois, xRy não é reflexiva e nem simétrica;
d) m.d.c (x,y)=1 ? número primos, portanto, xRy ? m.d.c (x,y)=1 ? Z, mas \not\in N, logo xRy não é uma relação de equivalência em N;
e) xRy ? x + y = 10
Então R não é uma relação de equivalência em N, pois R não é reflexiva, por
exemplo,
4 + 4 ? 10, ou seja, 4 não está relacionado com 4;
Solução: item a.
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.