• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração de igualdade de dois números ao quadrado

Demonstração de igualdade de dois números ao quadrado

Mensagempor johnlaw » Sáb Mar 05, 2011 18:15

Olá Pessoal,

Como posso demonstrar que a^2 = b^2


Obrigado


Abraços!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor MarceloFantini » Sáb Mar 05, 2011 19:26

John, poderia mostrar o problema completo? Assim está estranho. De qualquer forma, poderia tentar demonstrar que a=b ou a=-b.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor Abelardo » Seg Mar 07, 2011 01:04

Como {a}^{2}={b}^{2} então extraindo a raiz quadrada de ambos os membros terás que a = b.

Afirmação: ''a é igual a b''. ''b'' será igual a ''a'' , logo os seus quadrados serão iguais.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor MarceloFantini » Seg Mar 07, 2011 13:05

A rigor, extraindo as raízes quadradas você encontra que os módulos são iguais: |a| = |b|, e que então temos dois casos: a=b ou a=-b. Só podemos afirmar que é o primeiro se for dito que a,b \geq 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor johnlaw » Seg Mar 07, 2011 18:02

Acho que descobri,

Estava pensando em:

Se a^2 = b^2, então a = b ou a = -b

Se a^2 = b^2, então são iguais, se são iguais, então a^2 - b^2 = 0

Sabemos que, a^2 - b^2 (que é zero) também é igual a (a-b)*(a+b) então:

(a-b)*(a+b) = 0 e se isso aí é zero então: (a-b) = 0 ou (a+b)=0

Para (a-b) = 0 temos: a = b e
para (a+b) = 0 temos: a=-b

É isso que estava eu querendo, provar que a^2 = b^2, mas que na verdade tenho que provar as duas hipóteses: a = b e a = -b
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor Abelardo » Seg Mar 07, 2011 18:28

Foi lindo isso! Aprendi demais com essa..
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor MarceloFantini » Seg Mar 07, 2011 20:34

Você está confundindo as palavras. Você não tem que provar hipóteses. Eu mesmo não estou entendendo até agora o que exatamente você quer: era provar que dados dois números a e b, a^2 = b^2 \iff a = b \text{ ou } a = -b?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor johnlaw » Qui Mar 10, 2011 14:40

Me desculpe se me enganei com as palavras...

Eu queria provar que a^2 = b^2 e para isso eu caio em duas hipóteses (está correto o termo ?): a = b e a=-b então.. provar essas duas últimas... que foi o que fiz..

Abraços!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor MarceloFantini » Qui Mar 10, 2011 19:58

Não, você está confundindo ainda. Se você saiu que a^2 = b^2, isso é sua hipótese. Se você chegou que a=b ou a=-b, isso é sua tese.

Até agora você não postou a questão na íntegra.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração de igualdade de dois números ao quadrado

Mensagempor johnlaw » Sex Mar 11, 2011 01:43

Ah sim.. é isso, eu queria provar essa hipótese e consegui. Só isso, não tem questão.

Obrigado, abraços!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: