• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dominio da expressão

dominio da expressão

Mensagempor jose henrique » Sáb Set 18, 2010 20:55

Tenho uma questão que pediu para determinar o dominio de cada expressão, isto é, o conjunto de todos os valores reais de x onde podemos calcular cada expressão abaixo:

A)y= \sqrt[]{2-x}

B)y=\sqrt[3]{{x}^{2}-1}


eu não sei nem por onde começar
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: dominio da expressão

Mensagempor DanielRJ » Sáb Set 18, 2010 21:17

Olá amigo vamos lá:

A) \sqrt {2-x} para que essa função tenha dominio basta que a expressão seja > 0 ou sejá só pode assumir valores positivo. pois é uma raiz quadrada e raiz de numero negativo não existe. logo.
2-x>0
-x>-2 quando se multiplica por -1 inverte a posição.
x<2

B) \sqrt[3]{x^2-1} já essa expressão nada impede , pois é raiz cúbica, logo serve numeros positivos e negativos. X\varepsilon R

Não sei se escrevi merda.. mas algum professor irá aparece e explica-lo melhor! Só tem um detalhe que fiquei curioso ai no seu perfil ta GRADUADO EM MATEMATICA e voce não sabe isto?
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: dominio da expressão

Mensagempor MarceloFantini » Seg Set 20, 2010 03:15

Está certo, apenas uma correção: na primeira, é não-negativa, o que significa que também pode ser zero. Portanto, a resposta é x \leq 2, não apenas x<2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: dominio da expressão

Mensagempor DanielRJ » Seg Set 20, 2010 13:30

Fantini escreveu:Está certo, apenas uma correção: na primeira, é não-negativa, o que significa que também pode ser zero. Portanto, a resposta é x \leq 2, não apenas x<2.



Obrigado Fantini tinha esquecido desse detalhe. :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)