• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Não estou conseguindo resolver esse exercício

[Fatoração] Não estou conseguindo resolver esse exercício

Mensagempor Ze Birosca » Qua Fev 04, 2015 18:55

Sendo: x - \frac{1}{x} = 3

dertemine o valor de x^4 + \frac{1}{x^4}

o gabarito marca 119, mas eu não faço a minima de ideia de como chegar a esse resultado.

A primeira coisa que eu pensei em fazer foi 3^4, mas acho que estou errado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:06

Tome x - \frac{1}{x} = a. Agora, elevemos ao quadrado.

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

Portanto, x^2+\frac{1}{x^2} = a^2 + 2.

Repitamos o processo.

\left (x^2+\frac{1}{x^2}   \right )^2= x^4 +1+1+\frac{1}{x^4} = x^4 + \frac{1}{x^4}+2

Portanto, x^4 + \frac{1}{x^4}+2 = (a^2+2)(a^2+2) \Rightarrow x^4 + \frac{1}{x^4} = (a^2+2)^2 -2.

Fazendo a=3 você obtém 119.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 20:49

obrigado Russman, mas não estou conseguindo enteder essa parte aqui:

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

de onde vêm esse 1-1?

se eu fizesse:

\left ( x-\frac{1}{x} \right )^2 = x^2-\frac{1^2}{x^2}

eu estaria errando?
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:58

Certamente.

Lembre-se que (a+b)^2 = a^2 +2ab+b^2 para todo a e b reais.

É fácil verificar a validade desta identidade. Tome, por exemplo, a=2 e b=3. Assim,

(2+3)^2 = 2^2 + 2.2.3 + 3^2 = 4  + 12 +9 = 25

como devia ser, já que sabemos que (2+3)^2 = 5^2 = 25.

Agora, tome a=x e b = -\frac{1}{x}.

Assim, seguindo a identidade,

\left (x-\frac{1}{x}   \right )^2= x^2  +2.x.\frac{1}{x}+\frac{1}{x}.\frac{1}{x} =x^2+2+\frac{1}{x^2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 21:56

Ah, agora entendi.

fiz agora com o a = 3 e cheguei ao resultado.

Obrigado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.