por Estudante13 » Qua Mar 20, 2013 12:11
estou com duvidas de como fazer essa questõe...
tento mas nunca dão o mesmo resultado:
3-1 + 2-² - (-4)-¹=
1/3¹ + 1/2² + 1/4¹
1/3 + 1/4 + 1/4
4/12 + 3/12 + 3/12 ---------> por que deu esse resultado???? (é que são exercícios do livro por isso estou perguntando)
10/12 = 5/6
ficarei grata se me explicarem mais sobre potenciação (mandar algum vídeo ou sei la) e tbm notificação cientifica
sei que são assuntos bobos mas.... em fim

Obrigada pela atenção.
Estudante13
-
Estudante13
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Nov 04, 2012 15:40
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Nenhum
- Andamento: cursando
por nakagumahissao » Qua Mar 20, 2013 14:35
Estudante13,
Resolução:


Tirando o Mínimo Múltiplo Comum entre os denominadores 3, 4 e 4, tem-se que:
3 4 4 | 2
3 2 2 | 2
3 1 1 | 3
1 1 1 |
Primeiro, tenta-se dividir 3, 4 e 4 por 2. Como somente os dois números quatro são divisíveis por 2, repete-se na segunda linha o 3, e 4/2 = 2 embaixo dos dois números quatro. Como ainda dá para continuar dividindo por 2, coloca-se o segundo número 2 à direita da barra e divide-se 3, 2 e 2 por 2, ficando 3, 1 e 1. Como somente sobrou o 3 e o único número que divide o 3 é ele mesmo, coloca-se o três à direita da barra e divide-se 3, 1 e 1 por 3, ficando com 1, 1, 1 finalmente. Chegando neste ponto, ou seja, 1, 1 e 1, temos o resultado do MMC (Mínimo Múltiplo Comum), que nada mais é que o a multiplicação dos divisores encontrados, que neste caso são: 2, 2 e 3 e que se encontram à direita da barra.
Multiplicando-os, teremos: 2 x 2 x 3 = 12
Assim, o 12 irá para o denominador. Por fim, toma-se o 12 encontrado e divide-se por cada denominador e multiplica-se pelo numerador. Por exemplo: Para 1/3, pega-se o 12, divide-se por 3 e multiplica-se por 1, ficando 4/3. Faça isto para as três frações acima. Desta maneira, tudo ficará da seguinte forma:

Que nada mais é do que:

Que por sua vez, dividindo-se o numerador por 2 e o denominador por 2, ficará:

Espero ter sanado sua dúvida.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [potenciação] raiz cúbica com potenciação
por JKS » Qua Mar 06, 2013 17:41
- 2 Respostas
- 2153 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:43
Álgebra Linear
-
- [potenciação] módulo com potenciação
por JKS » Qua Mar 06, 2013 17:54
- 2 Respostas
- 1625 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:53
Equações
-
- POTENCIAÇÃO
por DANIELA » Sex Set 25, 2009 16:48
- 5 Respostas
- 3551 Exibições
- Última mensagem por DanielFerreira

Seg Set 28, 2009 10:20
Álgebra Elementar
-
- potenciação
por leandrofelip » Ter Fev 23, 2010 00:10
- 1 Respostas
- 1920 Exibições
- Última mensagem por Marcampucio

Ter Fev 23, 2010 12:56
Sistemas de Equações
-
- POTENCIACAO
por CaAtr » Ter Mar 09, 2010 20:23
- 3 Respostas
- 2181 Exibições
- Última mensagem por CaAtr

Ter Mar 09, 2010 22:17
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.