• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas com potência

Problemas com potência

Mensagempor Jem - » Dom Jan 24, 2010 16:58

Olá
Estou com algumas duvidas na seguinte questao
Efetue as operações :

\left(\frac{2a{b}^{2}}{{c}^{3}}  \right)^2 .\left(\frac{{a}^{2}c}{b} \right)^3

\frac{4{a}^{2}{b}^{4}}{{c}^{6}} .\frac{{a}^{6}{c}^{3}}{{b}^{3}}

\frac{4{a}^{8}(4{a}^{2}c)({b}^{4}{a}^{6})({b}^{4}{c}^{3})}{{c}^{6}{b}^{3}}

E agora..como continuo?, cancelo expoentes?/
não sei cmo devo proceder, se puderem me ajudar...
Jem -
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 26, 2009 18:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problemas com potência

Mensagempor Elcioschin » Seg Jan 25, 2010 09:46

Esqueça a última linha do seu raciocínio

(4*a²*b^4)*(a^6*c³)/c^6*b³ ----> Apenas junte os termos do numerador:

4*a^8*b^4*c³/c^6*b³ ----> Simplifique b^4 com b³ e c³ com c^6

4*a^4*b/c³
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.