• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Diofantina Quadrática

Equação Diofantina Quadrática

Mensagempor CJunior » Qui Jun 26, 2014 10:53

Olá, pessoal! Estou em dúvida no seguinte problema:

Determine todos os pares (x,y) de inteiros positivos que satisfazem a equação
x^{2}-xy+2x-3y=2013.

OBS.:Considerei essa equação como uma equação do segundo grau em x ( já que x^{2}-xy+2x-3y=2013 \iff x^2-x(y-2)-3y-2013=0), donde \Delta=(-(y-2))^2-4 \cdot 1 \cdot (-3y-2013)=(2-y)^{2}-4 \cdot (-3y-2013)=4-4y+y^2+12y+8052=y^2+8y+8056.Aí depois eu não sei mais como prosseguir a resolução!!!Desde já, muito obrigado pela ajuda!!!
CJunior
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Jan 26, 2014 13:18
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Equação Diofantina Quadrática

Mensagempor Russman » Qui Jun 26, 2014 21:31

Eu acho que a sua abordagem não é a melhor.Eu pensei em fazer o seguinte:

De fato, você pode escrever

x^2-xy+2x-3y = (x-y-1)(x+3) + 3

Verifique!

Assim, a sua equação se torna

(x-y-1)(x+3) + 3 = 2013
(x-y-1)(x+3) =2010

Como 2010 = 2.3.5.67, então

(x-y-1)(x+3) =2.3.5.67

Por exemplo, um par inteiro solução da equação é x=64 e y=33. Eu fiz x+3 = 67 e (x-y-1)=30 de onde segue. Agora basta calcular os outros. Eu ACHO que a quantidade de pares será a combinação de 4, 2 a 2 multiplicada pela combinação de 4, 3 a 3. Ou seja, 24 pares diferentes. Mas não tenho certeza.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.