• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gráfico + circunferência = ?

Gráfico + circunferência = ?

Mensagempor IsadoraLG » Dom Mai 25, 2014 23:07

Olá,

Não estou conseguindo resolver este exercício, e gostaria de saber se há alguma técnica específica para casos em que há circunferências e gráficos.

(UFMG) Na figura, C é o centro da circunferência, M é o ponto médio de CB e DE é perpendicular à AB. Se A= (1,-1) e C=(5,2), então o comprimento de DE é:

Coloquei um anexo da imagem também.
Anexos
Exercício UFMG.png
Exercício UFMG Circunferência
Exercício UFMG.png (7.31 KiB) Exibido 1098 vezes
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: Gráfico + circunferência = ?

Mensagempor Russman » Seg Mai 26, 2014 17:18

A questão dá tanta informação que é fácil ficar confuso em qual método de solução investir.

Eu faria assim:

Já que definimos um sistema de eixos x e y, podemos mapear essa circunferência definindo a equação que a gera. Você deve saber que a equação de uma circunferência de cento no ponto genérico (x,y) = (a,b) e raio r é

(x-a)^2+(y-b)^2=r^2

Daí, a nossa circunferência de centro (5,2) se escreve como

(x-5)^2+(y-2)^2 = r^2.

Mas, e o raio? Outro ponto foi dado: o ponto A de coordenadas (1,-1). Portanto, deve ser verdade que

(1-5)^2 + (-1-2)^2 = r^2

de onde r=5.

Note que a reta que liga o ponto B ao A é uma contante. Os pontos estão na mesma "altura", com relação ao eixo y. Isto é, as coordenadas de B devem ser (x_B,-1). Com isso, já que B pertence a circunferência, entao

(x_B - 5)^2+(-1-2)^2=25
(x_B-5)^2 = 16

de onde x_B = 1 ou x_B = 9. Mas se x_B = 1 então A=B que não reflete a nossa situação. Portanto, B=(9,-1).

Agora, se M é o ponto médio de CB, não é difícil de mostrar que M = \left ( \frac{x_B+x_C}{2},\frac{y_B+y_C}{2} \right ).
Assim, M = \left ( \frac{9+5}{2},\frac{-1-1}{2} \right ) = \left ( 7,-1 \right ).

Veja que os pontos D e E são pontos que pertencem a circunferência e, ao mesmo tempo, tem ambos coordenada x igual a coordenada x de M!
Portanto, a única forma de D= (7,y_D) e E=(7,y_E) se ajustarem a geometria a qual lhes é sugerida é o cumprimento de

(7-5)^2 + (y_D - 2)^2 = 25
(7-5)^2 + (y_E - 2)^2 = 25

Certo?

Resolvendo, genericamente, a equação

4 + (y - 2)^2 = 25

você obtem y = 2 \pm \sqrt{21}. Como 2 + \sqrt{21} > 2 - \sqrt{21} e o ponto D está "mais alto" que E, então E =(7,2+ \sqrt{21}) e D =(7,2-\sqrt{21}).

Finalmente, a distância esntre eles será, já que compartilham a mesma coordenada x,

d_{ED} = 2+ \sqrt{21} - (2 - \sqrt{21}) = 2 \sqrt{21}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D