• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de congruência

Equação de congruência

Mensagempor marinalcd » Qui Nov 21, 2013 12:06

Boa tarde,

estou estudando esse tipo de equações e gostaria de saber se esta resolução está correta:

Resolver 5x\equiv4(mod 7).

Como 5.4 = 20 \equiv(mod7), multiplicamos a equação por 4:
20x=x\equiv16(mod 7)

Logo, S=\{x\in Z|x\equiv16 (mod7)\}=\{x=7k+16,k\in Z\}

Está correto?

Obrigada!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Equação de congruência

Mensagempor Man Utd » Sex Nov 22, 2013 20:23

marinalcd escreveu:Boa tarde,

estou estudando esse tipo de equações e gostaria de saber se esta resolução está correta:

Resolver 5x\equiv4(mod 7).

Como 5.4 = 20 \equiv(mod7), multiplicamos a equação por 4:
20x=x\equiv16(mod 7)

Logo, S=\{x\in Z|x\equiv16 (mod7)\}=\{x=7k+16,k\in Z\}

Está correto?

Obrigada!



não está correto.

veja:

dada a equação de congruência: 5x\equiv4(mod 7)

multiplicando por 4:

20 \equiv 16 mod(7)


veja que:

20 \equiv -1 mod(7)

16 \equiv 2 mod(7)

então ficamos com:

-x \equiv 2 mod(7)

então:

x \equiv -2 mod(7)

que equivale a : x=7a-2 , com a pertecentes ao conjunto dos números inteiros.

uma segunda alternativa é fazer: 5x-4=17y \\\\\ 5x-17y=4 , resolvendo esta equação diofantina vc obtém o msm resultado. :D
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.