• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[matrizes]

[matrizes]

Mensagempor TLWeber » Sáb Out 26, 2013 20:53

Boa noite preciso ajuda em duas questões sobre matrizes

1ª Questão


sendo:
A= \begin{pmatrix}                       
1 & 0\\ 
2 & -1
\end{pmatrix}

B= \begin{pmatrix}
3 & -2\\ 
1 & 4
\end{pmatrix}

C= \begin{pmatrix}
0 & -3\\ 
-2 & 5
\end{pmatrix} determine:

a) A.B.C

OBS sei que para fazer a multiplicação é linha vezes coluna mas nao fechou podem me ajudar?!


2ª Questão

Dadas as matrizes A= (aij) 6x4, tal que aij= i-j, B= (bij)4x5, tal que bij= j-i e C=AB, determine o elemento C42


a resposta é 2

alguem poderia me mostrar como faze-la? pois nao entendi a mesma
TLWeber
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 22, 2013 23:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [matrizes]

Mensagempor e8group » Sáb Out 26, 2013 22:29

Na questão 2 . Observe que pela definição de produto entre matrizes que o termo geral da matriz C=AB é dado por :

c_{ij} = \sum_{r=1}^4  a_{ir} b{jr}    ,   i=1,...,6 , j=1,...,5 .Utilizando que ,

a_{ir} =  i-r e b_{rj}= j-r ,segue

a_{ir}b{jr} = (i-r)(j-r) =  i \cdot j - (i+ j)r + r^2 .

Logo ,

c_{ij} = \sum_{r=1}^4 (i \cdot j - (i+ j)r + r^2) =  \sum_{r=1}^4 i \cdot j  - (i+ j)\sum_{r=1}^4 r+\sum_{r=1}^4 r^2 =  4 i \cdot j - (i+ j)(1+2+3+4) + (1^2 +2^2 +3^2 +4^2) .

Daí ,

c_{42} = 4\cdot 4 \cdot 2 - (4+ 2)(1+2+3+4) + (1^2 +2^2 +3^2 +4^2)  =   2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.