• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potências

Potências

Mensagempor Jhennyfer » Qui Mai 16, 2013 11:31

a resposta no meu gabarito é -2 e eu só consigo chegar em 0
(MACK) O valor da expressão \left[\left(\frac{-1}{2}\right)^4 + \left(\frac{-1}{2} \right)^3\right]. \left[\left(\frac{-1}{2} \right)^4 - 2^-^5 \right]^-^1

Ps. não consegui deixar o 1 elevado com o sinal... mas ali no final é ^-1.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Victor Gabriel » Qui Mai 16, 2013 12:29

olha ai a resolução da questão:

\left(\frac{1}{{2}^{4}}+\frac{(-1)}{{2}^{3}} \right).\left(\frac{1}{{2}^{4}}-\frac{1}{{2}^{5}} \right)^{-1}=

=\left(\frac{1}{16}-\frac{1}{8} \right).\left(\frac{1}{24}-\frac{1}{32} \right)^{-1}=\left(\frac{1-2}{16} \right).\left(\frac{2-1}{32} \right)^{-1}=-\frac{1}{16}.\left( \frac{1}{32}\right)^{-1}=-\frac{1}{16}.32=-2
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Potências

Mensagempor Jhennyfer » Qui Mai 16, 2013 12:38

opa, 2^4 é 16.
no mais tudo ok, obrigado me ajudou mto.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Victor Gabriel » Qui Mai 16, 2013 13:12

é verdade jhrnnyfer, mim atrapalhei, no lugar de 24 é 16 pois, {2}^{4}=2.2.2.2=16.

Valeu!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}