• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logarítmo

logarítmo

Mensagempor karen » Ter Nov 27, 2012 20:41

\frac{5}{2} = {1,2}^{n}

Dados: log2 = 0,30 e log 3 = 0,48

Tentei aplicar log dos dois lados, mas não vi nada que me ajudasse a descobrir n.
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: logarítmo

Mensagempor e8group » Ter Nov 27, 2012 22:03

Note que ,

1,2 = 1,2 = 1,2\cdot\frac{10}{10} = \frac{12}{10}= \frac{3\cdot4}{2\cdot5} .

Logo ,

\frac{5}{2} = \left(\frac{3\cdot4}{2\cdot5} \right )^n = \frac{3^n4^n}{2^n5^n}=\frac{3^n2^{2n}}{2^n5^n} .

Multiplicando ambos lados por 2^2\cdot(2^n5^n) ,vamos obter 2^2\cdot(2^n5^n)\cdot\frac{5}{2}= 2^2\cdot(2^n5^n)\cdot\frac{3^n2^{2n}}{2^n5^n} \leftrightarrow   2^{n+1}5^{n+1} = (5\cdot2)^{n+1} = 10^{n+1} = 3^n 2^{2n+2} .

Aplicando logaritmo , vem que log(10^{n+1})= (n+1)log(10)=n+1 =  log(3^x2^{2n+2})= log(3^n) + log(2^{2n+2}) = n\cdot log(3) + 2(n+1)\cdot log(2) =    n\cdot log(3) + 2n\cdot log(2) + 2log(2) .

Somando -n ambos lados e colocando o fator n em evidência ,


n(log(3)+ 2log(2)-1) + 2log(2) = 1


Somando - 2log(2) nos dois lados e após isto multiplicando por 1/((log(3)+ 2log(2)-1) ) ,vamos obter que ,

n =  \frac{1 - 2log(2)}{(log(3)+ 2log(2)-1)}



Basta susbstituir os valores aproximados de log(2) e log(3) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: logarítmo

Mensagempor karen » Qua Nov 28, 2012 14:41

Trabalhoso!
Muito obrigada =)
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.