por Bielto » Sáb Jul 28, 2012 10:35
(CESGRANRIO) - A representação decimal de

é:
a)

b)

c)
d)
e)

Resposta do gabarito do livro é a letra d
Eu podia jurar que era a letra b.
-
Bielto
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Qui Jul 12, 2012 15:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Médio
- Andamento: formado
por LuizAquino » Sáb Jul 28, 2012 11:33
Bielto escreveu:(CESGRANRIO) - A representação decimal de

é:
a)

b)

c)
d)
e)

Bielto escreveu:Resposta do gabarito do livro é a letra d
Eu podia jurar que era a letra b.
Note que:
ObservaçãoEu recomendo que você assista as videoaulas do Nerckie "Matemática Zero - Aula 9 - Potenciação" e "Matemática Zero - Aula 20 - Notação Científica". Essas videoaulas estão disponíveis no canal dele no YouTube:
http://www.youtube.com/nerckie
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Bielto » Sáb Jul 28, 2012 13:29
Luiz, só uma observação.
Quando tiver os números
a)(0,0001) ou b)(0,001) ou c)(0,00001) ... O zero antes da vírgula também conta? Ou somente o zeros depois da vírgula
ficando a)

ou o correto é

? b)

ou

? c)

ou

Abraço.
-
Bielto
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Qui Jul 12, 2012 15:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Médio
- Andamento: formado
por Bielto » Sáb Jul 28, 2012 13:51
Por favor me ajudem.
-
Bielto
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Qui Jul 12, 2012 15:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Médio
- Andamento: formado
por LuizAquino » Sáb Jul 28, 2012 14:05
Bielto escreveu:Luiz, só uma observação.
Quando tiver os números
a)(0,0001) ou b)(0,001) ou c)(0,00001) ... O zero antes da vírgula também conta? Ou somente o zeros depois da vírgula
ficando a)

ou o correto é

? b)

ou

? c)

ou

O correto é:




(...)

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Potenciação] questão envolvendo Notação cientifica
por fernandocez » Ter Nov 13, 2012 21:40
- 7 Respostas
- 6271 Exibições
- Última mensagem por DanielFerreira

Ter Nov 20, 2012 22:29
Aritmética
-
- notação cientifica
por jose henrique » Qui Fev 10, 2011 22:45
- 1 Respostas
- 2400 Exibições
- Última mensagem por Molina

Sex Fev 11, 2011 02:16
Álgebra Elementar
-
- notação científica
por dandara » Dom Abr 24, 2016 11:32
- 1 Respostas
- 2684 Exibições
- Última mensagem por DanielFerreira

Dom Abr 24, 2016 14:18
Aritmética
-
- notação cientifica
por ezidia51 » Ter Mar 13, 2018 12:33
- 4 Respostas
- 3520 Exibições
- Última mensagem por ezidia51

Ter Mar 13, 2018 22:58
Números Complexos
-
- Questão de notação científica!
por LuizCarlos » Dom Out 23, 2011 17:44
- 1 Respostas
- 1873 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 31, 2012 19:15
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.