• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raízes dúvida

Raízes dúvida

Mensagempor LuizCarlos » Dom Mai 06, 2012 12:40

Olá amigos professores, não consigo enxergar onde está meu erro nesse exercício!

\sqrt[5]{\frac{{a}^{3}.\sqrt[]{{a}^{2}}}{\sqrt[]{a}}} = \sqrt[5]{\frac{{({a}^{3})}^{2}.{a}^{2}}{\sqrt[]{a}}} = \sqrt[5]{\frac{\sqrt[]{{a}^{6}.{a}^{2}}}{a}} =  \sqrt[10]{\frac{{a}^{6}.{a}^{2}}{a}} =

\sqrt[10]{\frac{{a}^{2}}{a}} = \sqrt[10]{{a}^{7}} = \sqrt[5]{{a}^{3}.a} =
\sqrt[5]{{a}^{4}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Raízes dúvida

Mensagempor DanielFerreira » Dom Mai 06, 2012 15:32

\sqrt[5]{\left(\frac{a^3\sqrt[]{a^2}}{\sqrt[]{a}} \right)} =

\sqrt[5]{\left(\frac{\sqrt[]{a^6.a^2}}{\sqrt[]{a}} \right)} =

\sqrt[5]{\left(\frac{\sqrt[]{a^8}}{\sqrt[]{a}} \right)} =

\sqrt[5]{\sqrt[]{\frac{a^8}{a}}} =

\sqrt[5]{\sqrt[]{a^7}} =

\sqrt[10]{a^7}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Raízes dúvida

Mensagempor LuizCarlos » Seg Mai 07, 2012 12:44

Obrigado amigo danjr5! consegui entender! :y:
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Raízes dúvida

Mensagempor DanielFerreira » Ter Mai 08, 2012 22:29

:y: :y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}