• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício Raízes

Exercício Raízes

Mensagempor LuizCarlos » Sáb Mai 05, 2012 23:16

Olá amigos professores, boa noite! gostaria de saber em qual lugar estou errando nesse exercício, pois não estou enxergando o erro!

(a+b).\sqrt[]{\frac{a}{{a}^{2}-{b}^{2}}} = \sqrt[]{{(a+b)}^{2}}.\sqrt[]{\frac{a}{{a}^{2}-{b}^{2}}} = \sqrt[]{(a+b).\frac{a}{{a}^{2}-{b}^{2}}} = \sqrt[]{\frac{(a+b).(a+b).a}{(a+b).(a-b)}}

= \sqrt[]{\frac{{a}^{2}+ab}{a-b}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Exercício Raízes

Mensagempor DanielFerreira » Sáb Mai 05, 2012 23:57

(a + b)\sqrt[]{\left[\frac{a}{a^2 - b^2} \right]} =

\sqrt[]{(a + b)^2.\left[\frac{a}{a^2 - b^2} \right]} =

\sqrt[]{\left[\frac{a(a + b)^2}{(a + b)(a - b)} \right]} =

\sqrt[]{\frac{a(a + b)}{(a - b)}} =

Luiz Carlos,
na 3ª igualdade vc eliminou erradamente o expoente de (a + b). Talvez tenha sido erro ao digitar, pois nossa resposta é a mesma!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Exercício Raízes

Mensagempor LuizCarlos » Dom Mai 06, 2012 00:23

danjr5 escreveu:(a + b)\sqrt[]{\left[\frac{a}{a^2 - b^2} \right]} =

\sqrt[]{(a + b)^2.\left[\frac{a}{a^2 - b^2} \right]} =

\sqrt[]{\left[\frac{a(a + b)^2}{(a + b)(a - b)} \right]} =

\sqrt[]{\frac{a(a + b)}{(a - b)}} =

Luiz Carlos,
na 3ª igualdade vc eliminou erradamente o expoente de (a + b). Talvez tenha sido erro ao digitar, pois nossa resposta é a mesma!!


Olá amigo danjr5, obrigado por sempre me ajudar, você é uma ótima pessoa! na terceira igualdade existe um produto notável no numerador:
{(a+b)}^{2} = (a+b)(a+b), somente fiz isso!

Mas a resposta no livro não é a mesma que a nossa!

A reposta no livro é: \sqrt[]{\frac{{a}^{2}+ ab}{{a}^{2}+ {b}^{2}}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Exercício Raízes

Mensagempor DanielFerreira » Dom Mai 06, 2012 15:27

Então, o gabarito do seu livro está errado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Exercício Raízes

Mensagempor LuizCarlos » Dom Mai 06, 2012 19:30

danjr5 escreveu:Então, o gabarito do seu livro está errado!!


Creio que esteja mesmo, já fiz e refiz essa questão várias vezes, e somente encontro o mesmo resultado! obrigado amigo.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Exercício Raízes

Mensagempor DanielFerreira » Seg Mai 07, 2012 02:09

Não há de quê.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}