• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Inteiros

Números Inteiros

Mensagempor Pri Ferreira » Qua Mar 21, 2012 14:51

A quantidade de números inteiros compreendidos entre 0 e
4000, que podem ser expressos como a soma de duas ou
mais potências distintas de 5, é igual a:
(A) 54
(B) 55
(C) 56
(D) 57
Gostaria mt de ver a resolução!!Ajuda!! Por favor!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Números Inteiros

Mensagempor LuizAquino » Sex Mar 23, 2012 09:23

Pri Ferreira escreveu:A quantidade de números inteiros compreendidos entre 0 e
4000, que podem ser expressos como a soma de duas ou
mais potências distintas de 5, é igual a:
(A) 54
(B) 55
(C) 56
(D) 57


Pri Ferreira escreveu:Gostaria mt de ver a resolução!!


Você deseja descobrir a quantidade de números inteiros entre 0 e 4.000 que possuam o seguinte formato:

x = 5^{a} + 5^{b}

y = 5^{a} + 5^{b} + 5^{c}

z = 5^{a} + 5^{b} + 5^{c} + 5^{d}

(...)

A primeira pergunta a se fazer é: quantas parcelas no máximo podemos ter?

Para responder essa pergunta, precisamos determinar o número natural n tal que:

5^0 + 5^1 + 5^2 + \cdots + 5^n \leq 4.000

Note que no primeiro membro dessa inequação nós temos a soma dos n+1 termos de uma p. g., de primeiro termo 1 e razão 5. Temos então que:

\dfrac{1\cdot\left(5^{n+1} - 1\right)}{5 - 1} \leq 4.000

5^{n+1} \leq 16.001

Como 5^6 = 15.625 e 5^7 = 78.125, temos que no máximo n + 1 = 6. Ou seja, no máximo podemos ter 6 parcelas.

Agora a pergunta é: quantos números inteiros distintos podemos formar somando 2 ou mais números da lista \{5^0,\, 5^1,\, 5^2,\, 5^3,\, 5^4,\, 5^5\} ?

Uma dica: lembre-se do conceito de combinação.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Números Inteiros

Mensagempor Pri Ferreira » Dom Mar 25, 2012 19:51

Entendi!!Consegui terminar!! Fiz a combinação de 6 tomados 2, 3, 4 , 5 e 6 separadamente e depois somei e cheguei na resposta!!!
Mt obrigada!!!
Tá me ajudando mt!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: