por Arkanus Darondra » Seg Jan 09, 2012 15:40
Numa turma, há n alunos, com

. Dividindo esse alunos em grupos de 4, sobram dois deles e, dividindo-os em grupos de 6, também sobram dois alunos. Calcule o valor de n.
A resposta é 158. Entretanto, não consegui pensar em um caminho para resolvê-la.
Agradeço a quem ajudar.
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Seg Jan 09, 2012 21:03
Arkanus Darondra escreveu:Numa turma, há n alunos, com

. Dividindo esse alunos em grupos de 4, sobram dois deles e, dividindo-os em grupos de 6, também sobram dois alunos. Calcule o valor de n.
A resposta é 158. Entretanto, não consegui pensar em um caminho para resolvê-la.
Agradeço a quem ajudar.
Seja
a o quociente da divisão n por 4:
n = 4a + 2
Seja
b o quociente da divisão n por 6:
n = 6b + 2
Igualando-as...
4a + 2 = 6b + 2
2a = 3b

Dividindo o 1º possível valor de
n (147) por 4:
teremos quociente: 36,75
Isto é, o valor de
a deverá ser maior que 36. Mas, sabemos que deverá ser um múltiplo de três, então: {39, 42, 45,...}
Vejamos o 39:
a = 39
Enfim, multicando a razão por 13:

n = 4a + 2
n = 4 * 39 + 2
n = 158Se verificássemos a = 42, deveríamos multiplicar a razão por 14 (

)...

n = 4a + 2
n = 4 * 42 + 2
n = 170
Que não satisfaz a condição:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Arkanus Darondra » Seg Jan 09, 2012 21:20
Valeu!

-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Seg Jan 09, 2012 21:22
Oi Arkanus,
Uma outra forma de encarar esse tipo de problema é usar congruência.
Pelo enunciado sabemos que n deixa resto 2 tanto na divisão por 4 como na divisão por 6, isto é:

e

.
Entre 147 e 167, os inteiros congruentes a

, isto é aqueles

que deixam resto 2 na divisão por 4 são 150, 154, 158, 162 e 166.
Entre 147 e 167, os inteiros congruentes a

, isto é aqueles

que deixam resto 2 na divisão por 6 são 152, 158 e 164.
O elemento comum aos dois conjuntos acima é 158 que é a resposta para o problema.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Arkanus Darondra » Seg Jan 09, 2012 22:07
Valeu!

-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Colégio Naval - Aritmética dos inteiros
por eliky » Sex Mai 17, 2013 01:16
- 1 Respostas
- 2252 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 20:40
Aritmética
-
- Aritmética- Duvida em questão do livro praticando aritmética
por wellkirby » Sex Ago 28, 2015 17:37
- 1 Respostas
- 3391 Exibições
- Última mensagem por wellkirby

Seg Set 07, 2015 23:15
Aritmética
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5491 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Inteiros
por Gaussiano » Sex Dez 30, 2011 12:14
- 0 Respostas
- 913 Exibições
- Última mensagem por Gaussiano

Sex Dez 30, 2011 12:14
Álgebra Elementar
-
- números inteiros
por thadeu » Qui Nov 19, 2009 11:41
- 2 Respostas
- 1970 Exibições
- Última mensagem por thadeu

Qui Nov 19, 2009 13:46
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.