• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de Fração

Simplificação de Fração

Mensagempor Andreza » Dom Jan 01, 2012 14:02

Simplificando a fração \frac{{x}^{2}-4+x+2}{\left(x-1)({x}^{2} +4x+4)\right)}
Esta expressão aparentemente fácil nao deu certo; fiz da seguinte maneira:

Tendo uma diferença de dois quadrados no numerador fatorei e encontrei (x+2)(x-2) restando tb +(x+2)
No denominador conservei (x-1) e fatorei (x²+4x+4)= (x+2)²
Cancelando os termos comuns encontrei \frac{x+2}{x-1}

Sendo q a resposta no gabarito é \frac{1}{x+2}

Onde será q eu errei?
Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Simplificação de Fração

Mensagempor fraol » Dom Jan 01, 2012 14:34

Veja que 1 é raiz do numerador e, portanto, o numerador pode ser escrito como:

(x - 1) . ( ? ).

Quer tentar agora?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Simplificação de Fração

Mensagempor fraol » Dom Jan 01, 2012 14:59

Ou melhor, seguindo o seu raciocínio para o numerador, você parou em:

(x+2)(x-2) + x + 2 , continuando,

= (x+2)(x-2) + (x + 2)

= (x+2)( (x-2) + 1)

= (x + 2)(x - 1).
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Simplificação de Fração

Mensagempor DanielFerreira » Sáb Jan 07, 2012 20:23

\frac{x^2 - 4 + x + 2}{(x - 1)(x^2 + 4x + 4)} =


\frac{(x + 2)(x - 2) + x + 2}{(x - 1)(x + 2)^2} =


\frac{(x + 2)[(x - 2) + 1]}{(x - 1)(x + 2)^2} =


\frac{(x + 2)(x - 1)}{(x - 1)(x + 2)^2} =


\frac{(x - 1)(x + 2)}{(x - 1)(x + 2)^2} =


\frac{1}{(x + 2)}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}