• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvidas ....

Dúvidas ....

Mensagempor vanessa134 » Seg Out 17, 2011 01:06

1) Quais números inteiros positivos menores que 120 podem ser escritos como soma de duas ou mais potencias distintas de base 3 e expoente inteiro maiores do que zero? Porr exemplo, 12=3² + 3¹ é o mesmo número deste tipo mas 18=3² + 3² não é.

2)Por defnição temos que todo número inteiro n maior do que 1 admite pelo menos um divisor primo. Se n é primo, então tem somente dois divisores, a saber, 1 e n. Se n é uma potencia de um primo, ou seja, é da forma p^s, então 1, p,p², ..., p^s são os divisores positivos de n. Calcule a soma dos numeros inteiros positivos menores do que 120, que tem exatamente 3 divisores positivos.

Obrigada

Vanessa
vanessa134
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Out 17, 2011 00:02
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}