• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação - 2º grau com delta menor que zero

Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sex Mar 25, 2011 18:27

\frac{x+1}{2-x}<\frac{x}{3+x}

Resolvendo a expressão e analisando os dois casos possíveis, chego em uma inequação de 2º grau com \Delta<0

Como resolvo a partir daí? O resultado do livro não é vazio!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Sex Mar 25, 2011 18:31

Envie a sua resolução para que possamos identificar onde está o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sex Mar 25, 2011 18:56

\frac{x+1}{2-x} - \frac{x}{3+x} < \frac{x}{3+x} - \frac{x}{3+x}

\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:

2{x}^{2} +2x+ 3<0
e
2{x}^{2} +2x+ 3>0

Elas não têm raízes reais. E a partir daí não sei resolver.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor MarceloFantini » Sex Mar 25, 2011 20:22

Vamos analisar assim: \frac{2x^2 +2x +3}{(2-x)(3+x)} < 0. Como o numerador é sempre positivo, basta descobrir quando (2-x)(3+x) é negativo.

3+x < 0 \Longleftrightarrow x < -3

2-x < 0 \Longleftrightarrow x>2

Assim, S = ( - \infty, -3) \cup ( 2, + \infty).

Em questões assim, não elimine o denominador. Trabalhe com a fração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sáb Mar 26, 2011 01:52

Obrigado por mais essa!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Sáb Mar 26, 2011 10:31

renanrdaros escreveu:Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:
2{x}^{2} +2x+ 3<0
e
2{x}^{2} +2x+ 3>0

É comum os alunos cometerem o equívoco de multiplicar as inequações usando expressões e não se preocupar com o sinal das mesmas. Leia no tópico a seguir um comentário a respeito disso:
inequação, dúvida.
viewtopic.php?f=106&t=3856
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor johnlaw » Dom Mar 27, 2011 13:08

Então, desenvolvendo o\frac{x+1}{2-x}<\frac{x}{3+x} eu chego em \frac{2x+3}{(2-x)(3+x)} <0. O denominador fica igual, mas não posso dizer que ele será maior que zero e então encontrar somente o denominador.

Desenvolvi assim:

\frac{x+1}{2-x} - \frac{x}{3+x} < \frac{x}{3+x} - \frac{x}{3+x}

\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

\frac{3x + 3 + x^2 +x - 2x -x^2 }{(2-x)(3+x)}<0

\frac{x + 3+ x}{(2-x)(3+x)}<0
\frac{2x + 3}{(2-x)(3+x)}<0


Para dar a equaçã de 2º grau acima, aquele primeiro +x (na 3ª linha desenvolvida) deveria ser -x, mas o que fiz está errado ?

Valeu! Abraços a todos!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Dom Mar 27, 2011 13:29

johnlaw escreveu:\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

\frac{3x + 3 + x^2 +x - 2x -x^2 }{(2-x)(3+x)}<0


Nessa passagem está o erro. O correto seria:
\frac{3x + 3 + x^2 +x - 2x + x^2 }{(2-x)(3+x)}<0

Ou seja, o seu problema foi no desenvolvimento do termo -(2-x)x, que deve ser igual -2x+x^2 e não - 2x -x^2 como você fez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor johnlaw » Dom Mar 27, 2011 16:33

Ah sim!! OK Luiz, muito obrigado!


Abraços!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: