• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra

algebra

Mensagempor jose henrique » Sex Mar 25, 2011 14:20

\sqrt[]{1-x} \sqrt[]{1-x} \Leftrightarrow  \sqrt[]{(1-x)(1-x)}\Leftrightarrow \sqrt[]{{x}^{2}-2x+1}

isso poderia ser feito, pois no meu livro o resultado é 1-x
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: algebra

Mensagempor profmatematica » Sex Mar 25, 2011 14:28

Eu nao sei add formulas aqui amigo mas vejamos resolvendo isso teremos raiz quadrada de (1-x) elevado ao quadrado dai corta o quadrado de (1-x) com o quadrado da raiz e sai da raiz apenas 1-x que e a resposta ok?
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: algebra

Mensagempor Molina » Sex Mar 25, 2011 14:29

Boa tarde, José Henrique.

Poderia ser feito sim. O que você esqueceu, é que ao invés de fazer a distributiva, seria muito mais fácil deixar aquele termo ao quadrado:

\sqrt[]{1-x} \sqrt[]{1-x} \Leftrightarrow  \sqrt[]{(1-x)(1-x)}\Leftrightarrow \sqrt[]{(1-x)^2}=1-x


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: algebra

Mensagempor LuizAquino » Sex Mar 25, 2011 15:33

Apenas lembrando que se a é um número real qualquer, então \sqrt{a^2} = |a|.

Sendo assim, temos que \sqrt{(1-x)^2} = |1 - x|.

Se no exercício há a informação de que x \leq 1, então aí sim poderíamos dizer que \sqrt{(1-x)^2} = 1 - x.
Editado pela última vez por LuizAquino em Sáb Mar 26, 2011 11:33, em um total de 2 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: algebra

Mensagempor jose henrique » Sáb Mar 26, 2011 10:58

:y: :y: :-D
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.