• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: uma dúvida

Álgebra: uma dúvida

Mensagempor Caeros » Sex Mar 18, 2011 14:50

Sejam A = R e \Re uma relação definida em R por:
x\Rey\:\Leftrightarrow\:0\leq\:x-y\:\leq\:1
Mostre que \Re o {\Re}^{-1}= {(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}
Por definição de composição de relações temos:
\Re\:o\:{\Re}^{-1}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:(x,y)\:\in\:{\Re}^{-1}\:e\:(y,z)\:\in\:\Re}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:(y,x)\:\in\:\Re\:e\:(y,z)\:\in\:\Re}
= {(x,z)\:\in\:{R}^{2}:\exists\:y\:\in\:R\:tal\:que\:0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1}
Seja S = {(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}.
Devemos mostrar que \Re o {\Re}^{-1}= S.
De fato,
(x,y)\:\in\:\Re\:o\:{\Re}^{-1}\Rightarrow\:0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1
mas,
0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1
\Rightarrow\:y-z\leq1
\Rightarrow\:y-z\leq1+y-x
\Rightarrow\:x-z\leq1

0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1
\Rightarrow\:y-x\leq1
\Rightarrow\:y-x\leq1+y-z
\Rightarrow\:-1\leq\:x-z

assim;

0\leq\:y-x\:\leq\:1,\:0\leq\:y-z\:\leq\:1\:\Leftrightarrow\:-1\leq\:x-z\leq\:1\:\Leftrightarrow\:|x-z|\leq\:1

Então (x,z) \in S isto é, \Re o {\Re}^{-1}\:\subseteq\:S

Reciprocamente, seja (x;z) \in S ,então
|x-z|\leq\:1.

Tomando y = max{x;z} temos
(a partir deste ponto tenho uma dúvida, desta resolução o termo "tomando y=max{x,z}" tem qual implicação na solução? :?: :?: , significa que dos dois x e y devemos "pegar" o maior? :?: :?: , mas porquê? :?: :?: )
e continua:
0\leq\:y-x\:\leq\:1\:e\:0\leq\:y-z\:\leq\:1

daí, (x,y) \subseteq\:\Re\:o\:{\Re}^{-1}, isto é, S \:\subseteq\:\Re\:o\:{\Re}^{-1}.
Portanto,
\Re\:o\:{\Re}^{-1} ={(x,z)\:\in\:{R}^{2}:\left|x-z \right|\:\leq1}
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: