• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Teoria dos conjuntos2

Álgebra: Teoria dos conjuntos2

Mensagempor Caeros » Sáb Mar 05, 2011 20:06

Seja W = {1,2,3,4}. Considere as seguintes relações em W:
R1 = {(1,1), (1,2)}, R4 = {(1,1), (2,2), (3,3)},
R2 = {(1,1), (2,3), (4,1)}, R5 = W x W
R3 = {(1,3), (2,4)}
Diga se cada uma das relações é ou não: (1) simétrica, (2) anti-simétrica, (3) transitiva, (4) reflexiva.
(1) Em R1, (1,2) ? R1, mas (2,1) \not\ina R1, não é simétrica;
Em R2, (2,3) ? R2, mas (3,2) \not\in a R2, não é simétrica, mesmo para (4,1);
Em R3, (1,3) ? R3, mas (3,1) \not\in a R3, não é simétrica, mesmo para (2,4);
Em R4, (1,1) ? R4, não necessariamente elementos distintos, é simétrica a relação;
Em R5, há todas as possibilidades de relações possíveis e também simétrica.
(2) Segundo o autor da questão apenas R5 não é anti-simétrica, mas se o conjunto é simétrico isso não é pré-requisito para ser anti-simétrico?Porque não?
(3) O autor da questão afirma ser todas transitivas, por quê? Exemplo em R2, se (1,1) ? R2 e (4,1) ? R2 mas (1,4) \not\in a R2. E porque R3 seria transitiva?
(4) Somente R5 é reflexiva, pois a definição deixa claro que cada elemento de W deve ser considerado.
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Teoria dos conjuntos2

Mensagempor LuizAquino » Dom Mar 06, 2011 10:22

Caeros escreveu:Diga se cada uma das relações é ou não: (1) simétrica, (2) anti-simétrica, (3) transitiva, (4) reflexiva.

Veja essas definições em:
Relação binária
http://pt.wikipedia.org/wiki/Rela%C3%A7 ... n%C3%A1ria

R5 não é anti-simétrica, pois, por exemplo, temos que:
(1,\,2)\in \textrm{R5}
(2,\,1)\in \textrm{R5}
Entretanto, 1 \neq 2.
Além disso, note que as propriedades de simetria e anti-simetria não são mutuamente excludentes. Isto é, uma relação pode ser ao mesmo tempo simétrica e anti-simétrica. A relação R4 é um exemplo disso.

R2 é transitiva, pois para quaisquer (a,\,b)\in \textrm{R2} e (b,\,c)\in \textrm{R2}, temos que (a,\,c)\in \textrm{R2} . Por exemplo, (4,\,1)\in \textrm{R2}, (1,\,1)\in \textrm{R2} e obviamente (4,\,1)\in \textrm{R2}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: