por silviomatheus » Qua Out 10, 2012 21:56
Boa noite, galerinha!
Estou com dificuldades em resolver uma questão de trigonometria da UNEB, mais específicamente da concurso para o cfo.
Com sinceridade, não consigo imaginar uma maneira de resolver essa questão então decidi compartilhá-la com vocês.
Desde já, fico muito agradecido com a contribuição de cada um de vocês.
Abraço
40- Com relação à figura apresentada,
- o segmento OP representa a haste à qual é fixada a lâmina de borracha PQ, do limpador de parabrisa do vidro traseiro de um automóvel, segundo um ângulo constante

- a região sombreada apresenta a área A, varrida por PQ quando OP faz uma rotação em torno do centro O, de um ângulo

no sentido anti-horário.
Sendo OP=PQ=x e

, pode-se afirmar que uma expressaõ válida para A em u.a é:

Editado pela última vez por
silviomatheus em Qui Out 11, 2012 17:21, em um total de 2 vezes.
-
silviomatheus
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Out 10, 2012 21:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Qui Out 11, 2012 14:02

- imagem
prolongando o seguimento OP e fazendo um recorte na figura, e possivel verificar que parte recortada se encaixa na parte de cima, com isso voce tem que a area é uma fração de um circulo com raio r menos a fração de um circulo com raio x. Voce precisa determinar o raio r em função de x levando em conta o angulo de 150º e com isso voce calcula a area.
qualquer duvida na hora de calcular o raio r e a area comente.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Expressão
por geriane » Qui Abr 22, 2010 12:49
- 4 Respostas
- 3896 Exibições
- Última mensagem por geriane

Sáb Abr 24, 2010 10:50
Trigonometria
-
- Expressão em PG
por Carolziiinhaaah » Qua Jun 16, 2010 21:10
- 1 Respostas
- 2009 Exibições
- Última mensagem por MarceloFantini

Qua Jun 16, 2010 21:39
Progressões
-
- EXPRESSAO
por JOHNY » Dom Set 05, 2010 15:26
- 1 Respostas
- 2095 Exibições
- Última mensagem por MarceloFantini

Seg Set 06, 2010 13:14
Álgebra Elementar
-
- expressão
por jose henrique » Qua Fev 16, 2011 18:16
- 11 Respostas
- 7751 Exibições
- Última mensagem por jose henrique

Seg Fev 28, 2011 19:39
Álgebra Elementar
-
- Expressão
por maria cleide » Dom Mai 08, 2011 16:47
- 1 Respostas
- 1813 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 18:01
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.